【 10X summary report】怎么看?详细解读笔记

报告内容

在开始正式的分析之前,需要查看在对齐和计数过程中生成的任何总结统计信息。下图是由Cell Ranger工具创建的10X总结报告,在从10X scRNA-seq实验生成计数矩阵时会生成。

 The left half of the report describes sequencing and mapping statistics. One thing to note is the “sequencing saturation”, which estimates the proportion of mRNA transcripts that has been sequenced. This is calculated by downsampling the mean number of reads per cell and obtaining the corresponding number of UMIs (nUMI). The relationship between the number of UMIs obtained against the number of reads is then extrapolated to the asymptote, which corresponds to 100% saturation. A low sequencing saturation implies that deeper sequencing will likely recover more UMIs. That said, some preliminary analysis should first be performed to determine if the current number of UMIs recovered is able to answer the biological questions of interest. Also, check that a high percentage of reads are mapped to the genome, which indicates low amounts of contamination.

The top-right portion of the report plots the nUMI captured in each droplet / barcode, with the droplets ordered in decreasing nUMI from left to right. On the left side of the plot, droplets have very high nUMI and are likely to contain cells. As we scan through the droplets towards the right, we eventually encounter a “knee point” where there is a drastic drop in the nUMI. This likely signifies a transition from observing cell-containing droplets to droplets containing cell debris or no cells at all. Droplets that are deemed by Cell Ranger to contain cells are coloured blue here and the algorithm tends to include slightly more cells beyond the plot shoulder. These cells with smaller nUMIs will have to be removed in the quality control step.

From the summary report, there is another important observation: the nUMI does not correspond to the number of reads per cell. Recall that this is because reads with the same UMI originated from a single mRNA molecule and is thus treated as a single UMI count . Thus, the number of counts i.e. nUMI is usually only a fraction (about 1/8 to 1/3) of the number of reads.

 下图为本人使用CellRanger V5.2.0对语一个单细胞数据跑出的结果

报告解读

细胞和基因数目的评估

  1. Estimated number of cells - 样本测到的细胞数
  2. Mean reads per cell - 每个细胞测到的平均reads
  3. Median genes per cell - 每个细胞基因数的中位数

Sequencing中

Number of reads - 测到的总read数目

Valid barcodes - UMI校正后匹配的UMI数量

Sequencing saturation:测序饱和度。一般60-80%比较合适(阈值范围可以适当调整,但是高于70%或80%左右绝对OK)。如果测到的细胞数多,但是每个细胞里面的平均reads数少,那么饱和度就不高,反之,饱和度高。但也不是越高越好,背后原理是抽样的原理,到达80%左右就可以代表整个样本了。

Q30 bases in barcode - 基于barcode的分数,大于30的比率

Q30 bases in RNA read - 基于RNA read的分数,大于30的比率

Q30 bases in UMI - 基于UMI的分数,大于30的比率

认为要一般要大于65%,少于这个比例的话,这个页面会报错,

Mapping结果

  1. Reads mapped to genome - 比对到选定基因组的reads
  2. Reands mapped confidently to genome - 仅仅比对到基因组的reads,如果一条reads既可以比对到外显子区又可以比对到非外显子区,那么算比对到了其中一个外显子区
  3. Reads mapped confidently to intergenic regions - 比对到基因组的基因间区域
  4. Reads mapped confidently to intronic regions - 比对到内含子区域
  5. Reads mapped confidently to exonic regions - 比对到外显子区域
  6. Reads mapped confidently to transcriptome - 比对到转录组的reads,这些读数可以用来UMI的计数
  7. Reads mapped antisense to gene - 比对到基因的相反的reads

细胞数目评估Cells图

横轴是barcodes,纵轴是UMI数量。通过barcode上的UMI标签分布来评估细胞数目,深蓝色代表细胞,灰色代表背景。

在前期磁珠(bead)与细胞形成油包水的结构过程中,会存在没有把细胞包进去的情况,这时候的油包水结构里面就只有磁珠和一些barcode的序列,而cDNA的碱基序列一般都是barcode碱基序列的10倍以上,就是由此来确定哪些是真实的细胞,哪些是background。

其他指标

  1. Estimated number of cells - 样本测到的细胞数
  2. Fraction reads in cells - valid-UMI的质量分数,代表与细胞相关的UMI可靠地比对到基因组,一般要在70%及以上,否则数据质量就不好
  3. Mean reads per cell - 每个细胞测到的平均reads
  4. Median genes per cell - 每个细胞的基因数中位数
  5. Total genes detected - 测到的总基因数,至少有一条UMI
  6. Median UMI counts per cell - 细胞UMI数量的中间值

饱和度评估

  1. 对reads抽样,观察不同抽样条件下检测到的转录本数量占检测到的所有转录本的比例。(如果曲线末端区域平滑,说明测序接近饱和,再增加测序量,覆盖到的转录本数目也不会变化太多。)
  2. 对reads抽样,观察不同测序数据量情况下检测到的基因数目的分布。(如果曲线末端区域平滑,说明测序接近饱和,再增加测序量,检测到的基因数目也不会变化太多。)

Reference

[1] A Guide to Analyzing Single-cell Datasets, John F. Ouyang, January 2023

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/426476.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

李沐动手学习深度学习——3.1练习

字写的有点丑不要介意 由于公式推导烦的要死,所以手写形式,欢迎进行讨论,因为我也不知道对错

2024最新AI系统ChatGPT网站源码, AI绘画系统

一、前言说明 R5Ai创作系统是基于ChatGPT进行开发的Ai智能问答系统和Midjourney绘画系统,支持OpenAI-GPT全模型国内AI全模型。本期针对源码系统整体测试下来非常完美,那么如何搭建部署AI创作ChatGPT?小编这里写一个详细图文教程吧。已支持GP…

lua调用C++函数

第一步搭建lua的环境. win10 lua环境搭建-CSDN博客 我使用的环境是win10vs2015lua54 先来个最简单的lua调用C函数, 无参数无返回值的 第一步:定义C函数. int CTest(lua_State* L) // 返回值是固定的int类型,返回0表示没有返回参数,返回1表示有一个返回参数 {std::cout &l…

模型部署 - BevFusion - (1) - 思路总结

模型部署实践 - BevFusion 思路总结一、网络结构 - 总结1.1、代码1.2、网络流程图1.3、模块大致梳理 二、Onnx 的导出 -总体思路分析三、优化思路总结 学习 BevFusion 的部署,看了很多的资料,这篇博客进行总结和记录自己的实践 思路总结 对于一个模型我…

自学高效备考2025年AMC8数学竞赛:2000-2024年AMC8真题解析

今天继续来随机看五道AMC8的真题和解析,根据实践经验,对于想了解或者加AMC8美国数学竞赛的孩子来说,吃透AMC8历年真题是备考最科学、最有效的方法之一。下面的五道题目如果你能在8分钟内做对(主要结果对,无需过程&…

【C++精简版回顾】18.文件操作

1.文件操作头文件 2.操作文件所用到的函数 1.文件io 1.头文件 #include<fstream> 2.打开文件 &#xff08;1&#xff09;函数名 文件对象.open &#xff08;2&#xff09;函数参数 /* ios::out 可读 ios::in 可…

Vue前端+快速入门【详解】

目录 1.Vue概述 2. 快速入门 3. Vue指令 4.表格信息案例 5. 生命周期 1.Vue概述 1.MVVM思想 原始HTMLCSSJavaScript开发存在的问题&#xff1a;操作麻烦&#xff0c;耦合性强 为了实现html标签与数据的解耦&#xff0c;前端开发中提供了MVVM思想&#xff1a;即Model-Vi…

Spring框架精髓:带你手写IoC

个人名片&#xff1a; &#x1f43c;作者简介&#xff1a;一名大三在校生&#xff0c;喜欢AI编程&#x1f38b; &#x1f43b;‍❄️个人主页&#x1f947;&#xff1a;落798. &#x1f43c;个人WeChat&#xff1a;hmmwx53 &#x1f54a;️系列专栏&#xff1a;&#x1f5bc;️…

巧用二进制实现俄罗斯方块小游戏

效果预览 思想 首先建立两个数组board、tetris用来存储当前已经堆积在棋盘的方块与正在下落的方块。 这两个是一维数组当需要在页面画棋盘时就对其每一项转成二进制&#xff08;看计算属性tetrisBoard&#xff09;&#xff0c;其中1&#xff08;红色&#xff09;0&#xff08;…

python celery beat实现定时任务

在Celery在python中的应用除了实现异步任务&#xff08;async task)外也可以执行定时任务(beat) 1.Celery定时任务是什么&#xff1f; Celery默认任务单元由任务生产者触发,但有时可能需要其自动触发, 而beat进程正是负责此类任务,能够自动触发定时/周期性任务. 只需要在配置…

yolov5训练太慢的解决方案

问题原因 训练太慢大多是因为没有安装CUDA和pytorch&#xff0c;导致的只有cpu在跑&#xff0c;显卡没跑 这就是很典型的。 解决方案 第一步&#xff1a;安装CUDA 在本机上面安装CUDA,记住只有N卡可以安装&#xff0c;一开始的电脑是自带CUDA的。 如果不是自带的CUDA&…

NoSQL--2.MongoDB配置

目录 2.MongdoDB配置 2.1 Windows环境下操作 2.1.1 注册MongDB Atlas&#xff1a; 2.1.2 MongoDB Community Server Download&#xff1a; 2.1.3 启动MondgoDB服务&#xff1a; 2.1.3.1 命令行参数的方式启动MongoDB服务&#xff1a; 2.1.3.2 使用配置文件方式启动Mongo…

游戏框架搭建

使用框架的目标&#xff1a;低耦合&#xff0c;高内聚&#xff0c;表现和数据分离 耦合&#xff1a;对象&#xff0c;类的双向引用&#xff0c;循环引用 内聚&#xff1a;相同类型的代码放在一起 表现和数据分离&#xff1a;需要共享的数据放在Model里 对象之间的交互一般有三…

如何使用恢复软件恢复删除的文件?回收站文件恢复攻略

随着计算机在日常生活中的普及&#xff0c;文件的管理和存储成为我们不可或缺的技能。在Windows操作系统中&#xff0c;回收站作为一个帮助我们管理文件删除的重要工具&#xff0c;在误删了一些重要文件之后&#xff0c;我们可能会因为找不到回收站中恢复的文件而感到困惑。本文…

革命文物的新征程:SpringBoot实践

✍✍计算机编程指导师 ⭐⭐个人介绍&#xff1a;自己非常喜欢研究技术问题&#xff01;专业做Java、Python、微信小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。 ⛽⛽实战项目&#xff1a;有源码或者技术上的问题欢迎在评论区一起讨论交流&#xff01; ⚡⚡ Java实战 |…

打造个人知识库-chatwithrtx接口研究

前言 之前安装了chatwithrtx&#xff0c;确实挺好用的。但是如果想用其对外提供服务的话&#xff0c;还需要研究是否能够提供api接口进行调用&#xff0c;所以今天来进行一下研究。 gradio介绍 web的访问是通过gradio框架进行开发的。在user_interface.py中可以发现如下引用 im…

第十六天-爬虫selenium库

目录 1.介绍 2.使用 selenium 1.安装 2.使用 1.测试打开网页&#xff0c;抓取雷速体育日职乙信息 2.通过xpath查找 3.输入文本框内容 send_keys 4.点击事件 click 5.获取网页源码&#xff1a; 6.获取cookies 7.seleniumt提供元素定位方式&#xff1a;8种 8.控制浏览…

算法刷题day20:二分

目录 引言概念一、借教室二、分巧克力三、管道四、技能升级五、冶炼金属六、数的范围七、最佳牛围栏 引言 这几天一直在做二分的题&#xff0c;都是上了难度的题目&#xff0c;本来以为自己的二分水平已经非常熟悉了&#xff0c;没想到还是糊涂了一两天才重新想清楚&#xff0…

Linux红帽rhce认证多少钱?考个RHCE难不难?

Linux作为开源操作系统的佼佼者&#xff0c;已经广泛应用于各个领域。红帽认证工程师(Red Hat Certified Engineer&#xff0c;简称RHCE)作为Linux领域权威的认证之一&#xff0c;自然成为了众多IT从业者追求的目标。那么&#xff0c;RHCE认证的培训费用是多少?考取这一认证又…