基于深度学习的高精度课堂人脸检测系统(PyTorch+Pyside6+YOLOv5模型)

摘要:基于深度学习的高精度课堂人脸检测系统可用于日常生活中或野外来检测与定位课堂人脸目标,利用深度学习算法可实现图片、视频、摄像头等方式的课堂人脸目标检测识别,另外支持结果可视化与图片或视频检测结果的导出。本系统采用YOLOv5目标检测模型训练数据集,使用Pysdie6库来搭建页面展示系统,同时支持ONNX、PT等模型作为权重模型的输出。本系统支持的功能包括课堂人脸训练模型的导入、初始化;置信分与IOU阈值的调节、图像上传、检测、可视化结果展示、结果导出与结束检测;视频的上传、检测、可视化结果展示、结果导出与结束检测;摄像头的上传、检测、可视化结果展示与结束检测;已检测目标列表、位置信息;前向推理用时。另外本课堂人脸检测系统同时支持原始图像与检测结果图像的同时展示,原始视频与检测结果视频的同时展示。本博文提供了完整的Python代码和使用教程,适合新入门的朋友参考,完整代码资源文件请转至文末的下载链接。
在这里插入图片描述

基本介绍

近年来,机器学习和深度学习取得了较大的发展,深度学习方法在检测精度和速度方面与传统方法相比表现出更良好的性能。YOLOv5是单阶段目标检测算法YOLO的第五代,根据实验得出结论,其在速度与准确性能方面都有了明显提升,开源的代码可见https://github.com/ultralytics/yolov5。因此本博文利用YOLOv5检测算法实现一种高精度课堂人脸检测模型,再搭配上Pyside6库写出界面系统,完成目标检测识别页面的开发。注意到YOLO系列算法的最新进展已有YOLOv6、YOLOv7、YOLOv8等算法,将本系统中检测算法替换为最新算法的代码也将在后面发布,欢迎关注收藏。

环境搭建

(1)下载完整文件到自己电脑上,然后使用cmd打开到文件目录
(2)利用Conda创建环境(Anacodna),conda create -n yolo5 python=3.8 然后安装torch和torchvision(pip install torch1.10.0+cu113 torchvision0.11.0+cu113 -f https://download.pytorch.org/whl/torch_stable.html -i https://pypi.tuna.tsinghua.edu.cn/simple)其中-i https://pypi.tuna.tsinghua.edu.cn/simple代表使用清华源,这行命令要求nvidia-smi显示的CUDA版本>=11.3,最后安装剩余依赖包使用:pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
在这里插入图片描述
在这里插入图片描述

(3)安装Pyside6库 pip install pyside6==6.3 -i https://pypi.tuna.tsinghua.edu.cn/simple
在这里插入图片描述

(4)对于windows系统下的pycocotools库的安装:pip install pycocotools-windows -i https://pypi.tuna.tsinghua.edu.cn/simple

界面及功能展示

下面给出本博文设计的软件界面,整体界面简洁大方,大体功能包括训练模型的导入、初始化;置信分与IOU阈值的调节、图像上传、检测、可视化结果展示、结果导出与结束检测;视频的上传、检测、可视化结果展示、结果导出与结束检测;已检测目标列表、位置信息;前向推理用时。希望大家可以喜欢,初始界面如下图:
在这里插入图片描述

模型选择与初始化

用户可以点击模型权重选择按钮上传训练好的模型权重,训练权重格式可为.pt、.onnx以及。engine等,之后再点击模型权重初始化按钮可实现已选择模型初始化信息的设置。
在这里插入图片描述
在这里插入图片描述

置信分与IOU的改变

在Confidence或IOU下方的输入框中改变值即可同步改变滑动条的进度,同时改变滑动条的进度值也可同步改变输入框的值;Confidence或IOU值的改变将同步到模型里的配置,将改变检测置信度阈值与IOU阈值。

图像选择、检测与导出

用户可以点击选择图像按钮上传单张图片进行检测与识别。
在这里插入图片描述

再点击图像检测按钮可完成输入图像的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

再点击检测结果展示按钮可在系统左下方显示输入图像检测的结果,系统将显示识别出图片中的目标的类别、位置和置信度信息。
在这里插入图片描述

点击图像检测结果导出按钮即可导出检测后的图像,在保存栏里输入保存的图片名称及后缀即可实现检测结果图像的保存。
在这里插入图片描述

点击结束图像检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频。

视频选择、检测与导出

用户可以点击选择视频按钮上传视频进行检测与识别,之后系统会将视频的第一帧输入到系统界面的左上方显示。
在这里插入图片描述

再点击视频检测按钮可完成输入视频的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

点击暂停视频检测按钮即可实现输入视频的暂停,此时按钮变为继续视频检测,输入视频帧与帧检测结果会保留在系统界面,可点击下拉目标框选择已检测目标的坐标位置信息,再点击继续视频检测按钮即可实现输入视频的检测。
点击视频检测结果导出按钮即可导出检测后的视频,在保存栏里输入保存的图片名称及后缀即可实现检测结果视频的保存。
在这里插入图片描述

点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频。

摄像头打开、检测与结束

用户可以点击打开摄像头按钮来打开摄像头设备进行检测与识别,之后系统会将摄像头图像输入到系统界面的左上方显示。
在这里插入图片描述

再点击摄像头检测按钮可完成输入摄像头的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频或打开摄像按钮来上传图像、视频或打开摄像头。

算法原理介绍

本系统采用了基于深度学习的单阶段目标检测算法YOLOv5,相比于YOLOv3和YOLOv4,YOLOv5在检测精度和速度上都有很大的提升。YOLOv5算法的核心思想是将目标检测问题转化为一个回归问题,通过直接预测物体中心点的坐标来代替Anchor框。此外,YOLOv5使用SPP(Spatial Pyramid Pooling)的特征提取方法,这种方法可以在不增加计算量的情况下,有效地提取多尺度特征,提高检测性能。YOLOv5s模型的整体结构如下图所示。

在这里插入图片描述

YOLOv5网络结构是由Input、Backbone、Neck、Prediction组成。YOLOv5的Input部分是网络的输入端,采用Mosaic数据增强方式,对输入数据随机裁剪,然后进行拼接。Backbone是YOLOv5提取特征的网络部分,特征提取能力直接影响整个网络性能。在特征提取阶段,YOLOv5使用CSPNet(Cross Stage Partial Network)结构,它将输入特征图分为两部分,一部分通过一系列卷积层进行处理,另一部分直接进行下采样,最后将这两部分特征图进行融合。这种设计使得网络具有更强的非线性表达能力,可以更好地处理目标检测任务中的复杂背景和多样化物体。在Neck阶段使用连续的卷积核C3结构块融合特征图。在Prediction阶段,模型使用结果特征图预测目标的中心坐标与尺寸信息。博主觉得YOLOv5不失为一种目标检测的高性能解决方案,能够以较高的准确率对目标进行分类与定位。当然现在YOLOv6、YOLOv7、YOLOv8等算法也在不断提出和改进,后续博主也会将这些算法融入到本系统中,敬请期待。

数据集介绍

本系统使用的课堂人脸数据集手动标注了人脸这一个类别,数据集总计9072张图片。该数据集中类别都有大量的旋转和不同的光照条件,有助于训练出更加鲁棒的检测模型。本文实验的课堂人脸检测识别数据集包含训练集7203张图片,验证集1869张图片,选取部分数据部分样本数据集如下图所示。由于YOLOv5算法对输入图片大小有限制,需要将所有图片调整为相同的大小。为了在不影响检测精度的情况下尽可能减小图片的失真,我们将所有图片调整为640x640的大小,并保持原有的宽高比例。此外,为了增强模型的泛化能力和鲁棒性,我们还使用了数据增强技术,包括随机旋转、缩放、裁剪和颜色变换等,以扩充数据集并减少过拟合风险。
在这里插入图片描述

关键代码解析

本系统的深度学习模型使用PyTorch实现,基于YOLOv5算法进行目标检测。在训练阶段,我们使用了预训练模型作为初始模型进行训练,然后通过多次迭代优化网络参数,以达到更好的检测性能。在训练过程中,我们采用了学习率衰减和数据增强等技术,以增强模型的泛化能力和鲁棒性。
在测试阶段,我们使用了训练好的模型来对新的图片和视频进行检测。通过设置阈值,将置信度低于阈值的检测框过滤掉,最终得到检测结果。同时,我们还可以将检测结果保存为图片或视频格式,以便进行后续分析和应用。本系统基于YOLOv5算法,使用PyTorch实现。代码中用到的主要库包括PyTorch、NumPy、OpenCV、PyQt等。
在这里插入图片描述
在这里插入图片描述

Pyside6界面设计

Pyside6是Python语言的GUI编程解决方案之一,可以快速地为Python程序创建GUI应用。在本博文中,我们使用Pyside6库创建一个图形化界面,为用户提供简单易用的交互界面,实现用户选择图片、视频进行目标检测。
我们使用Qt Designer设计图形界面,然后使用Pyside6将设计好的UI文件转换为Python代码。图形界面中包含多个UI控件,例如:标签、按钮、文本框、多选框等。通过Pyside6中的信号槽机制,可以使得UI控件与程序逻辑代码相互连接。

实验结果与分析

在实验结果与分析部分,我们使用精度和召回率等指标来评估模型的性能,还通过损失曲线和PR曲线来分析训练过程。在训练阶段,我们使用了前面介绍的课堂人脸数据集进行训练,使用了YOLOv5算法对数据集训练,总计训练了300个epochs。在训练过程中,我们使用tensorboard记录了模型在训练集和验证集上的损失曲线。从下图可以看出,随着训练次数的增加,模型的训练损失和验证损失都逐渐降低,说明模型不断地学习到更加精准的特征。在训练结束后,我们使用模型在数据集的验证集上进行了评估,得到了以下结果。
在这里插入图片描述

下图展示了我们训练的YOLOv5模型在验证集上的PR曲线,从图中可以看出,模型取得了较高的召回率和精确率,整体表现良好。
在这里插入图片描述

下图展示了本博文在使用YOLOv5模型对课堂人脸数据集进行训练时候的Mosaic数据增强图像。
在这里插入图片描述
在这里插入图片描述

综上,本博文训练得到的YOLOv5模型在数据集上表现良好,具有较高的检测精度和鲁棒性,可以在实际场景中应用。另外本博主对整个系统进行了详细测试,最终开发出一版流畅的高精度目标检测系统界面,就是本博文演示部分的展示,完整的UI界面、测试图片视频、代码文件等均已打包上传,感兴趣的朋友可以关注我私信获取。

其他基于深度学习的目标检测系统如西红柿、猫狗、山羊、野生目标、烟头、二维码、头盔、交警、野生动物、野外烟雾、人体摔倒识别、红外行人、家禽猪、苹果、推土机、蜜蜂、打电话、鸽子、足球、奶牛、人脸口罩、安全背心、烟雾检测系统等有需要的朋友关注我,从博主其他视频中获取下载链接。

完整项目目录如下所示:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/42633.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【论文阅读】2020ECCV-DFDNet

Blind Face Restoration via Deep Multi-scale Component Dictionaries 中文:基于深度多尺度分量字典的盲人脸复原 paper: code:https://github.com/csxmli2016/DFDNet 摘要: 近年来,基于参考的人脸恢复方法因其在真…

使用Seata解决分布式事务问题

说明:在分布式架构下,一个请求需要多个微服务来实现。当一个请求牵扯到多个微服务时,事务问题就变得麻烦起来。 问题描述 现在有三个服务,分别是账户服务、库存服务和订单服务,生成一个订单,需要确保商品…

Docker 命令(二)

查看 docker 版本信息 docker version #查看版本信息docker 信息查看 docker info Client:Context: defaultDebug Mode: falsePlugins:app: Docker App (Docker Inc., v0.9.1-beta3)buildx: Build with BuildKit (Docker Inc., v0.5.1-docker)Server:Containers: 0 …

Python补充笔记3-bug问题

目录 一、Bug 粗心导致的语法错误​ ​编辑 知识不熟练导致的错误​ 思路不清晰导致的问题​ 被动掉坑​ 二、try…except…else结构​ 三、try…except…else…finally结构​ 四、常见异常类型​编辑traceback模块 pycharm调试 一、Bug 粗心导致的语法错误 知识不熟练导致的…

【Vue 面试题10道】我好像之前想过要写,不过之前JavaScript面试题比较多,就暂时略过了,这些应该几乎把常问的都包括了

博主:_LJaXi Or 東方幻想郷 专栏: 前端面试题 开发工具:Vs Code 本题针对 Vue2 这些几乎把常用的都包括了,问别的就没意思了,毕竟工作拧螺丝嘛 我都好久不用Vue了,不过用了React再回看Vue感觉好简单啊… 其…

Dubbogo 详解

Dubbogo 详解 简介 dubbo功能很强大的微服务开发框架,支持多种通信协议,并具有流量治理的功能。 dubbo在有了大转变,拥抱了云原生,从哪些方面可以体现呢? 推出了自己的Trip协议修复了服务发现的级别,之…

20230723红米Redmi Note8Pro掉在水里的处理步骤

20230723红米Redmi Note8Pro掉在水里的处理步骤 2023/7/23 18:18 百度搜搜:小米手机进水 破音怎么处理 Redmi Note8Pro 6400万全场景四摄 液冷游戏芯 4500mAh长续航 NFC 18W快充 红外遥控 https://www.zhiliancy.com/a/q5podmr12.html 首页 / 热文 / 内容 小米喇叭…

【从删库到跑路】MySQL数据库的索引(一)——索引的结构(BTree B+Tree Hash),语法等

🎊专栏【MySQL】 🍔喜欢的诗句:更喜岷山千里雪 三军过后尽开颜。 🎆音乐分享【如愿】 🥰欢迎并且感谢大家指出小吉的问题 文章目录 🍔概述🍔索引结构⭐B-Tree多路平衡查找树🏳️‍&a…

前端技术Vue学习笔记--001

前端技术Vue学习笔记 文章目录 前端技术Vue学习笔记1、Vue2和Vue3比较2、Vue简介3、Vue快速上手4、插值表达式{{}}5、Vue响应式特性6、Vue指令6.1、v-html指令6.2、v-show指令和v-if指令6.3、v-else指令和v-else-if指令6.4、v-on指令6.4.1、v-on指令基础6.4.2、v-on调用传参 6.…

win10电脑便签常驻桌面怎么设置?

你是否曾经因为繁忙的工作而忘记了一些重要的事项?相信很多人都会回答:忘记过!其实在快节奏的职场中,我们经常需要记录一些重要的信息,例如会议时间、约见客户时间、今天需要完成的工作任务等。而为了能够方便地记录和…

阿里云安装宝塔面板

阿里云安装宝塔面板 1.安装步骤2.需要加入安全组,打开端口3.安装宝塔 1.安装步骤 1.这里主要以阿里云的服务器 ECS为例子,需要安装纯净的系统 创建过程: 这边先用的是免费的: 2.需要加入安全组,打开端口 进入实例选项卡: 快速添加&…

低代码平台协同OA升级,促进金融企业信息化建设

编者按:数字化办公是信息化时代每个企业不可避免的,OA系统是数字化办公的关键环节。如何与时俱进,保持企业的活力,增强企业综合竞争力?本文分析了企业OA系统为什么需要升级,并进一步指出如何实现升级。 关…

Linux环境下Elasticsearch相关软件安装

Linux环境下Elasticsearch相关软件安装 本文将介绍在linux(Centos7)环境下安装Elasticsearch相关的软件。 1、安装Elasticsearch 1.1 Elasticsearch下载 首先去Elasticsearch官网下载相应版本的安装包,下载之后传输到linux服务器上。 官网地址:http…

在自定义数据集上微调Alpaca和LLaMA

本文将介绍使用LoRa在本地机器上微调Alpaca和LLaMA,我们将介绍在特定数据集上对Alpaca LoRa进行微调的整个过程,本文将涵盖数据处理、模型训练和使用流行的自然语言处理库(如Transformers和hugs Face)进行评估。此外还将介绍如何使用grado应用程序部署和…

STM32MP157驱动开发——LED驱动(设备树)

文章目录 设备树驱动模型如何使用设备树写驱动程序设备树节点要与 platform_driver 能匹配设备树节点指定资源,platform_driver 获得资源 LED 模板驱动程序的改造:设备树驱动模型修改设备树,添加 led 设备节点修改 platform_driver 的源码编译…

设计模式再探——状态模式

目录 一、背景介绍二、思路&方案三、过程1.状态模式简介2.状态模式的类图3.状态模式代码4.状态模式还可以优化的地方5.状态模式的项目实战,优化后 四、总结五、升华 一、背景介绍 最近产品中有这样的业务需求,不同时间(这里不是活动的执行时间&…

前端学习——Vue (Day1)

Vue 快速上手 Vue 是什么 创建 Vue 实例 Vue2官网&#xff1a;https://v2.cn.vuejs.org/ <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content"IEedge…

基于单片机的语音识别智能垃圾桶垃圾分类的设计与实现

功能介绍 以51单片机作为主控系统&#xff1b;液晶显示当前信息和状态&#xff1b;通过语音识别模块对当前垃圾种类进行语音识别&#xff1b; 通过蜂鸣器进行声光报警提醒垃圾桶已满&#xff1b;采用舵机控制垃圾桶打开关闭&#xff1b;超声波检测当前垃圾桶满溢程度&#xff1…

【目标跟踪】2、FairMOT | 平衡多目标跟踪中的目标检测和 Re-ID 任务 | IJCV2021

文章目录 一、背景二、方法2.1 Backbone2.2 检测分支2.3 Re-ID 分支2.4 训练 FairMOT2.5 Online Inference 三、效果3.1 数据集3.2 实现细节3.3 消融实验3.4 最终效果 论文&#xff1a;FairMOT: On the Fairness of Detection and Re-Identification in Multiple Object Tracki…

大模型开发(十):Chat Completion Models API 详解

全文共8000余字&#xff0c;预计阅读时间约18~28分钟 | 满满干货(附代码案例)&#xff0c;建议收藏&#xff01; 本文目标&#xff1a;详解Chat Completion Models的参数及应用实例&#xff0c;并基于该API实现一个本地知识库的多轮对话智能助理 代码&文件下载点这里 一、…