深入了解Java虚拟机(JVM)

Java虚拟机(JVM)是Java程序运行的核心组件,它负责解释执行Java字节码,并在各种平台上执行。JVM的设计使得Java具有跨平台性,开发人员只需编写一次代码,就可以在任何支持Java的系统上运行。我们刚开始学习Java时就下载了JDK(Java开发工具包),它提供了编译、调试和运行Java应用程序所需的工具和库。JDK包括了JRE(Java运行时环境),JRE包含了Java虚拟机(JVM)。由于不同的CPU的指令集可能不同,所以相同的代码可能不能在不同的系统上都正常运行,而JVM就是为了解决这个问题,Java会先通过javac把  .java 文件编译为 java字节码(相当于Java自己的一套CPU指令)然后再由具体系统平台上的的JVM(不同系统上的JVM可能存在差异),把上述字节码转化为对应的CPU能识别的机器指令。

1. JVM中的内存区域划分 

 JVM其实也是一个进程(任务管理器中看到的java进程),Java程序的执行时申请的内存就是JVM从系统这边申请到的内存,JVM会先申请一块大的内存,这块内存在给Java程序使用时,又会根据实际的用图划分出不同的区域,每个区域都有不同的作用。

  1. Java堆(Java Heap): Java堆是Java虚拟机管理的最大一块内存区域,用于存放对象实例,数组,类的成员变量。Java堆是所有线程共享的内存区域,是垃圾回收的重点区域。

  2. Java虚拟机栈(Java Virtual Machine Stacks): Java虚拟机栈也称为栈内存,用于存储线程的方法调用、局部变量、部分结果等。每个方法在被调用时都会创建一个栈帧,并入栈;方法执行完毕后栈帧出栈。栈帧包括局部变量表、操作数栈、动态链接、方法返回地址等。

  3. 本地方法栈(Native Method Stack): 本地方法栈类似于Java虚拟机栈,但是它为Native方法服务,即JVM内部使用C、C++等编写的本地方法。

  4. 程序计数器(Program Counter Register): 程序计数器是一块较小的内存区域,用于记录当前线程下一条执行的字节码指令地址。在多线程环境下,每个线程都有独立的程序计数器。

  5. 元数据区(Metaspace)/ 方法区(Method Area):元数据指的是一些辅助性质的描述性质的属性,元数据区主要用于存储类的元数据信息,例如类的结构、方法信息、字段信息等。一个程序有哪些类,每个类中有哪些方法,每个方法里要包含哪些指令,都会记录在元数据区中,即元数据区储存了Java代码编译后的Java字节码

 注意:一个JVM进程中,堆和元数据区只有一个,栈和程序计数器可能有多份(每个线程都有一个自己的程序计数器和栈,即每个线程都有自己的执行流)。

public class Test{
    private int n;//堆区
    private static int m;//static修饰的变量为类属性储存在元数据区
    
    public static void main(String[] args) {
        Test t = new Test();//t为局部变量储存在栈区,类的实例储存在堆区
    }
}

2.JVM的类加载机制 

2.1 类加载过程 

JVM的类加载机制是指JVM在运行时将类的字节码加载到内存中并进行验证、准备、解析和初始化的过程。JVM的类加载机制主要包括以下几个步骤:

  1. 加载(Loading):查找并加载类的字节码文件。这个过程可以通过类加载器来完成,类加载器会根据类的全限定名在文件系统、网络或其他地方找到对应的字节码文件,并将其读入内存。

  2. 验证(Verification):确保被加载的类的字节码是合法、符合JVM规范的。包括文件格式验证、元数据验证、字节码验证、符号引用验证等步骤。具体验证依据,在Java虚拟机规范中有明确的格式说明

  3. 准备(Preparation):为类的静态变量分配内存并设置默认初始值,这些变量所使用的内存都将在方法区中进行分配。

  4. 解析(Resolution):将类中的符号引用转换为直接引用,这个过程可以在运行时进行也可以在编译时进行。

    class Test{
        String s = "hello";
    }

    上面代码编译后"hello"会储存在常量池中,s中相当于保存了“hello"的字符串常量的地址,但是代码没有运行时,s和"hello"都在字节码文件中,文件中没有地址这样的概念,所以在代码运行前s中存储的是一个类似于”偏移量"的概念记录了“hello”的相对位置,就是这里的符号引用。

  5. 初始化(Initialization):对类进行初始化,包括执行类构造器<clinit>()方法,静态变量赋值等操作。在初始化阶段,JVM会根据程序中对类的主动使用情况来触发初始化,例如创建类的实例、访问类的静态成员、调用类的静态方法等。

2.2 双亲委派模型

在类加载过程中,JVM采用了双亲委派模型,即由多个不同层次的类加载器组成一个层次结构,每个类加载器都有自己的责任范围,当一个类需要加载时,先由最顶层的类加载器尝试加载,如果无法加载再交由下一层的类加载器,依次类推,直到最底层的类加载器。

JVM中进行类加载是由一个专门的模块“类加载器(ClassLoader)”完成的,类加载器的作用是通过“全限定类名”(带有包名的类名,例如java.land.String,可以类比为文件路径中的绝对路径)查找 .class文件,把 .class文件的数据转化为运行时需要的类对象并加载到JVM中。

JVM中默认提供了三种类加载器,分别是:

  1. 启动类加载器(Bootstrap ClassLoader):负责加载Java的核心类库,如java.lang包下的类。它是JVM自身的一部分,通常由C++编写,并不继承自java.lang.ClassLoader类。

  2. 扩展类加载器(Extension ClassLoader):负责加载Java的扩展类库,位于jre/lib/ext目录下的类库。

  3. 应用程序类加载器(Application ClassLoader):也称为系统类加载器,负责加载当前项目的代码目录,以及第三方库的目录。

除了这三个默认的类加载器,开发者也可以自定义类加载器来实现特定的类加载需求,比如从网络中动态加载类、加密类加载等。自定义类加载器需要继承自java.lang.ClassLoader类,并重写其中的findClass()方法来实现类的加载逻辑。 

注意:这三个类加载器之间存在父子关系,上面的为父加载器,下面的为子加载器,即1是2的父亲,2是3的父亲。

双亲委派流程:当一个类加载器收到类加载请求时,它首先将这个请求委托给它的父类加载器处理。如果父类加载器无法完成此加载请求,子加载器才会尝试自己去加载。这个过程会一直递归下去直到启动类加载器。这样做的目的是保证Java核心API的稳定性,防止用户自定义的类替换掉核心类库中的类。

1. 从Application ClassLoader作为入口

2. Application ClassLoader不会立刻搜索自己负责的目录,会把任务交给父类加载器Extension ClassLoader。

3. Extension ClassLoader也不会立刻搜索自己负责的目录,也会把任务交给父类加载器Bootstrap ClassLoader。

4.Bootstrap ClassLoader没有父类加载器,就会搜索自己负责的目录查找需要的 .class文件,如果找到了就直接进入打开文件/读文件等流程中,如果没找到,则把任务交给下一级类加载器Extension ClassLoader继续尝试寻找。

5.Extension ClassLoader 接受到任务此时就会在自己负责的目录中开始寻找,如果找到了就直接进入打开文件/读文件等流程中,如果没找到,则同样把任务交给下一级类加载器Application ClassLoader继续尝试寻找。

6.Application ClassLoader 也会在自己负责的目录中开始寻找,如果找到了就直接进入打开文件/读文件等流程中,如果没找到,也会尝试把任务交给下一级,但是默认情况下Application ClassLoader没有下一级类加载器了,于是就会类加载失败抛出ClassNotFoundException异常

上述流程就保证了类加载的顺序,防止用户自定义的类替换掉核心类库中的类。例如用户自己定义了一个java.lang.String如果这个类先被加载了,java核心库中的String类就不会被加载。

3. 垃圾回收机制(GC) 

垃圾回收(GC)是自动内存管理的关键技术之一。它负责清理不再使用的对象,释放内存空间。垃圾回收,回收的是堆的内存 ,所以也可以说是回收对象。

3.1 识别垃圾 

判定对象后续是否会继续使用,不会继续使用的就会被视为垃圾,如果一个对象没有任何引用指向它,那么这个对象就无法被继续使用了,也就会被视为垃圾。

3.1.1 引用计数

引用计数方法并没有在JVM中使用,但是广泛运用在其他主流语言的垃圾回收机制中,如Python,PHP。

引用计数是通过给每个对象安排一个额外的空间,记录当前有几个引用指向该对象。每有一个引用指向该对象时,就把值加一,反之则减一,当这个值为0时则视为垃圾,当负责垃圾回收的扫描线程获取到这个对象的引用计数情况时,发现为0就会释放这个对象的空间。

引用计数存在两个关键的问题:

  1. 问题一:要给每个对象安排计数器,就会消耗额外的空间,如果对象数量很多,总的空间浪费也就很多。
  2. 问题二:可能产生循环引用问题,例如两个对象互相引用,但没有一个外部的引用指向它们,此时这两个对象是无法被获取到的,但他们的引用计数又不为0,也就不会被释放。
3.1.2 可达性分析 

JVM采用的就是可达性分析来识别对象是否是垃圾。

可达性分析采用的方法是 遍历所有变量,JVM会遍历所有能够被直接或者间接访问到的对象,能访问到的自然不是垃圾,遍历一圈后不能访问到的就视为垃圾。

3.2 释放垃圾 

找到垃圾以后就需要把垃圾对象所占的内存空间进行释放。

3.2.1 标记-清除算法

把标记为垃圾的对象直接释放。这种释放方式会导致内存碎片问题。

如图所示,释放后,会导致出现很多大大小小的内存碎片,而内存申请都是一次申请一段连续的内存空间,这就导致了部分内存碎片可能无法使用到,也就导致了空间浪费。

3.2.2 复制算法

将内存分为两个相等的部分,每次只使用其中一半。当这一半的内存用完后,就将还在使用的对象复制到另一半,然后再清除掉已经使用过的那一半内存中的所有对象。

这种方法避免了内存碎片,但是总的可用空间变少了,同时复制对象也会消耗时间。

3.2.3 标记-整理算法

将所有存活的对象向一端移动,然后直接清理掉端边界以外的内存。

 这样也可以避免内存碎片问题,但是移动对象也要消耗时间。

3.2.4 分代回收算法

JVM中采用的是分代回收算法。给每个对象引入年龄的概念,JVM中存在专门的线程负责周期性的扫描/释放对象,如果一个对象被线程扫描了一次,并且不是垃圾,该对象的年龄就会+1(初始年龄为0)。

JVM中会根据对象年龄的差异,把整个内存分成两个大的部分,新生代(年龄较小的对象)/ 老年代(年龄较大的对象),新生代又被划分为三个区域,其中大的一部分区域为 伊甸区 ,剩下两块大小相同的区域叫做  生存区  或者  幸存区 。

 

 新的对象都是从伊甸区中被创建的,第一轮GC扫描后,没有被清除的对象就会被通过复制算法移动到生存区(即生存区相当于未被使用的那块内存),生存区中的对象下次被GC扫描后,存活的对象又会被通过复制算法移动到另一个生存区(注意两个生存区完全是对等的),每经历一次GC,对象的年龄就会+1,如果某个对象在生存区中经过了若干轮GC任然没有被清除,JVM就会认为这个对象的生命周期很长,就会把这个对象移动到老年代,老年代的对象也会被GC扫描,只不过扫描的频率较低。老年代的对象被视为垃圾时会按照标记-整理算法释放内存。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/425796.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

考研数学——高数:微分方程

一、一阶线性微分方程 两种形式&#xff1a; 非齐次&#xff1a; 齐次&#xff1a; 推导过程 推导公式的过程一般由特殊到一般&#xff1a;所以先求解齐次方程的解 &#xff08;然后对等式两边同时积分&#xff09; 再来求非齐次方程的解&#xff0c;由…

小程序图形:echarts-weixin 入门使用

去官网下载整个项目&#xff1a; https://github.com/ecomfe/echarts-for-weixin 拷贝ec-canvs文件夹到小程序里面 index.js里面的写法 import * as echarts from "../../components/ec-canvas/echarts" const app getApp(); function initChart(canvas, width, h…

[数据结构]栈

1.栈的概念及结构 栈&#xff1a;一种特殊的线性表&#xff0c;其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一端称为栈顶&#xff0c;另一端称为栈底。栈中的数据元素遵守后进先出的原则。 压栈&#xff1a;栈的插入操作叫做进栈/压栈/入栈&#…

XUbuntu22.04之显示实时网速(二百一十八)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 优质专栏&#xff1a;多媒…

差分题练习(区间更新)

一、差分的特点和原理 对于一个数组a[]&#xff0c;差分数组diff[]的定义是: 对差分数组做前缀和可以还原为原数组: 利用差分数组可以实现快速的区间修改&#xff0c;下面是将区间[l, r]都加上x的方法: diff[l] x; diff[r 1] - x;在修改完成后&#xff0c;需要做前缀和恢复…

C++_红黑树

目录 1、红黑树的规则 2、红黑树节点的定义 3、红黑树插入节点的调整操作 3.1 情况一 3.2 情况二 3.3 情况三 4、红黑树的实现 结语 前言&#xff1a; 在C中&#xff0c;红黑树是二叉搜索树的另一种优化版本&#xff0c;他与AVL树的区别在于保持树的平衡方式不同&…

Unity游戏输入系统(新版+旧版)

使用新版还是旧版 旧版 using System.Collections; using System.Collections.Generic; using UnityEngine;public class c5 : MonoBehaviour {void Start(){}void Update(){// 注意要在游戏中 点鼠标键盘进行测试// 鼠标// 0左键 1右键 2滚轮if (Input.GetMouseButtonDown(0)…

Java二叉树(1)

&#x1f435;本篇文章将对二叉树的相关概念、性质和遍历等知识进行讲解 一、什么是树 在讲二叉树之前&#xff0c;先了解一下什么是树&#xff1a;树是一种非线性结构&#xff0c;其由许多节点和子节点组成&#xff0c;整体形状如一颗倒挂的树&#xff0c;比如下图&#xff1…

基于springboot+vue的党员教育和管理系统

博主主页&#xff1a;猫头鹰源码 博主简介&#xff1a;Java领域优质创作者、CSDN博客专家、阿里云专家博主、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战&#xff0c;欢迎高校老师\讲师\同行交流合作 ​主要内容&#xff1a;毕业设计(Javaweb项目|小程序|Pyt…

Springboot+vue的制造装备物联及生产管理ERP系统(有报告)。Javaee项目,springboot vue前后端分离项目。

演示视频&#xff1a; Springbootvue的制造装备物联及生产管理ERP系统&#xff08;有报告&#xff09;。Javaee项目&#xff0c;springboot vue前后端分离项 项目介绍&#xff1a; 本文设计了一个基于Springbootvue的制造装备物联及生产管理ERP系统&#xff0c;采用M&#xff…

C++ opencv 学习

文章目录 1、创建窗口2、读取图片3、视频采集4、Mat的使用5、异或操作6、通道分离&#xff0c;通道合并7、色彩空间转换8、最大值、最小值9、绘制图像10、多边形绘制11、随机数12、鼠标实时绘制矩形13、归一化14、resize操作15、旋转翻转16、视频操作17、模糊操作18、高斯模糊操…

力扣110 平衡二叉树 Java版本

文章目录 题目描述代码 题目描述 给定一个二叉树&#xff0c;判断它是否是高度平衡的二叉树。 本题中&#xff0c;一棵高度平衡二叉树定义为&#xff1a; 一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1 。 示例 1&#xff1a; 输入&#xff1a;root [3,9,…

LaTeX中的多行数学公式

目录 参考链接 一、gather以及gather*环境编排公式 1、 gather环境 2、 gather*环境 3、 阻止编号 二、align以及align*环境设定公式对齐方式 1、align环境 2、align*环境 三、split环境实现一个公式多行排版 四、cases环境实现分段函数 参考链接 LaTeX中的多行数学…

OpenCV 4基础篇| OpenCV图像的拼接

目录 1. Numpy (np.hstack&#xff0c;np.vstack)1.1 注意事项1.2 代码示例 2. matplotlib2.1 注意事项2.2 代码示例 3. 扩展示例&#xff1a;多张小图合并成一张大图4. 总结 1. Numpy (np.hstack&#xff0c;np.vstack) 语法结构&#xff1a; retval np.hstack(tup) # 水平…

Endnote x9 最快方法批量导入.enw格式文件

按照网上看到的一个方法直接选中所有enw批量拖拽到 All references 附件不行啊&#xff0c; 以为只能写bat脚本方式了 经过一番尝试&#xff0c;惊人的发现拖到下面这个符号的地方就行了&#xff01;&#xff01;&#xff01; 如果不成功的话&#xff0c;可能&#xff1a; 我…

C语言:结构体(自定义类型)知识点(包括结构体内存对齐的热门知识点)

和黛玉学编程呀&#xff0c;大家一起努力呀............. 结构体类型的声明 回顾一下 struct tag { member-list; }variable-list; 创建和初始化 我们知道&#xff0c;在C语言中&#xff0c;对于一些数据是必须初始化的&#xff0c;但是结构体怎么创建并且初始化呢&#xff1…

码垛工作站:食品生产企业的转型助推器

在当今高度自动化的工业生产中&#xff0c;码垛工作站的应用正逐渐成为一种趋势。某食品生产企业在面临市场竞争加剧、人工成本上升等多重压力下&#xff0c;决定引入码垛工作站&#xff0c;以期实现生产流程的升级与变革。 一、码垛工作站引入背景 该企业主要从事休闲食品的…

A股绿色发展报告:2000-2022年指数变化分析

一、有关“绿色发展”的发文趋势和主题分布 运用熵值法测算出企业绿色发展指数 二、数据来源&#xff1a;企业年报等&#xff0c;企业财务相关数据 三、时间跨度&#xff1a;2000-2022年 四、数据范围&#xff1a;A股上市公司 五、数据指标 股票代码 FE法全要素生产率 支付给…

STM32 中断流程介绍

STM32可以产生中断的事件多种多样&#xff0c;比如&#xff1a;定时器时间结束、串口接收到数据、某个GPIO检测到电平变化等等等等。 1、STM32 gpio 中断处理流程介绍 1、从引脚进入的高低电平首先由输入驱动器处理&#xff0c;如下图 2、经过输入驱动器处理后的信号会进…

栈与队列力扣经典例题20. 有效的括号1047. 删除字符串中的所有相邻重复项150. 逆波兰表达式求值

对于栈与队列&#xff0c;我们首先要搞清楚&#xff0c;栈是先入后出&#xff0c;而队列是先入先出&#xff0c;利用这个特性&#xff0c;我们来判断题目用什么STL容器&#xff0c;便于我们去解决问题 20. 有效的括号 这道题&#xff0c;首先我们要知道哪些情况&#xff0c;是会…