武器大师——操作符详解(下)

目录

六、单目操作符

七、逗号表达式

八、下标引用以及函数调用

8.1.下标引用

8.2.函数调用

九、结构体

9.1.结构体

9.1.1结构的声明

9.1.2结构体的定义和初始化

9.2.结构成员访问操作符

9.2.1直接访问

9.2.2间接访问

十、操作符的属性

10.1.优先性

10.2.结合性

十一、整形提升

结语


六、单目操作符

!、 ++ -- & * + - ~ sizeof ( 类型 )

 上述操作符中,我们在前面都说过,只有&和*没有提及,这两个操作符我们会在指针章节详细介绍。

七、逗号表达式

a1,a2,a3,.....an

逗号表达式,就是用多个逗号隔开的多个表达式。

它是按从左到右的顺序依次执行。整个表达式的结果是最后一个表达式的结果。

eg:

int a = 1;
int b = 2;
int c = (a>b, a=b+10, a, b=a+1);

首先,从左到右依次执行 ,先是a>b,然后把b+10赋给a,a就变成了12,最后再将a+1的值赋给b,这个表达式的值就是整个表达式的值,也就是13,所以c为13。

八、下标引用以及函数调用

8.1.下标引用

我们在数组中曾见过这对中括号,是的,它的名字叫下标引用。

操作数:数组名+索引值

eg:

int arr[10];//创建数组
arr[9] = 10;//实⽤下标引⽤操作符。
[]的两个操作数是arr和9。

8.2.函数调用

这个相信大家也不陌生。

操作数:函数名+参数

问:函数调用最少有几个操作数?

答:一个,只需要一个函数名即可。

#include <stdio.h>
void test1()
{
 printf("hehe\n");
}
void test2(const char *str)
{
 printf("%s\n", str);
}
int main()
{
 test1(); //这⾥的()就是作为函数调⽤操作符。
 test2("hello bit.");//这⾥的()就是函数调⽤操作符。
 return 0;
}

 接下来讲点没见过的。

九、结构体

我们今天只是简单介绍,后面还会继续详细介绍结构体(又挖坑)。

9.1.结构体

我们之前学过许多数据类型结构,像short、char、int、double......但只有这些其实远远不够,比如说我想描述一个学生的信息,身高体重各科成绩等等。C语言为了解决这个问题,内置了结构体这种自定义类型,从此之后,我们可以创造出自己想要的类型。
结构是⼀些值的集合,这些值称为成员变量。结构的每个成员可以是不同类型的变量,如:
标量、数组、指针,甚⾄是其他结构体。
9.1.1结构的声明
struct tag
{
 member-list;//成员列表
}variable-list //变量列表

 其中tag表述结构体名,花括号里面放着成员列表,也就是要描述对象的各种属性。变量列表用来存放定义为该结构体类型的变量。

struct Stu
{
 char name[20];//名字
 int age;//年龄
 char sex[5];//性别
 char id[20];//学号
}; //分号不能丢
9.1.2结构体的定义和初始化
//代码1:变量的定义
struct Point
{
 int x;
 int y;
}p1; //声明类型的同时定义变量p1
struct Point p2; //定义结构体变量p2
//代码2:初始化。
struct Point p3 = {10, 20};
struct Stu //类型声明
{
 char name[15];//名字
 int age; //年龄
};
struct Stu s1 = {"zhangsan", 20};//初始化
struct Stu s2 = {.age=20, .name="lisi"};//指定顺序初始化
//代码3
struct Node
{
 int data;
 struct Point p;
 struct Node* next; 
}n1 = {10, {4,5}, NULL}; //结构体嵌套初始化
struct Node n2 = {20, {5, 6}, NULL};//结构体嵌套初始化

9.2.结构成员访问操作符

9.2.1直接访问

使用方式:结构体变量 成员名

#include <stdio.h>
struct Point
{
 int x;
 int y;
}p = {1,2};
int main()
{
 printf("x: %d y: %d\n", p.x, p.y);
 return 0;
}

这个点很小,但是很有用!

9.2.2间接访问

有的时候,我们得到的是结构体的地址,

使用方式:结构体指针(地址)->成员名

举例如下:

#include <stdio.h>
struct Point
{
 int x;
 int y;
};
int main()
{
 struct Point p = {3, 4};
 struct Point *ptr = &p;
 ptr->x = 10;
 ptr->y = 20;
 printf("x = %d y = %d\n", ptr->x, ptr->y);
 return 0;
}

综合举例如下:

#include <stdio.h>
#include <string.h>
struct Stu
{
 char name[15];//名字
 int age; //年龄
};
void print_stu(struct Stu s)
{
 printf("%s %d\n", s.name, s.age);
}
void set_stu(struct Stu* ps)
{
 strcpy(ps->name, "李四");
 ps->age = 28;
}
int main()
{
 struct Stu s = { "张三", 20 };
 print_stu(s);
 set_stu(&s);
 print_stu(s);
 return 0;
}

十、操作符的属性

10.1.优先性

参考链接:C 运算符优先级 - cppreference.com 

   圆括号( ()
⾃增运算符( ++ ),⾃减运算符( --
单⽬运算符( + -
乘法( * ),除法( /
加法( + ),减法( -
关系运算符( < > 等)
赋值运算符( =
由于圆括号的优先级最⾼,可以使⽤它改变其他运算符的优先级。
 
大概记住这些就够了,其它可以现查表。

10.2.结合性

如果两个运算符优先级相同,优先级没办法确定先计算哪个了,这时候就看结合性了,则根据运算符 是左结合,还是右结合,决定执⾏顺序。⼤部分运算符是左结合(从左到右执⾏),少数运算符是右结合(从右到左执⾏),⽐如赋值运算符( = )。

十一、整形提升

C语⾔中整型算术运算总是⾄少以缺省整型类型的精度来进⾏的。

而为了获得这种精度,表达式中的字符型和短整型在使用之前就会被转换为整形,这种转换叫整形提升 

表达式的整型运算要在CPU的相应运算器件内执⾏,CPU内整型运算器(ALU)的操作数的字节长度⼀般就是int的字节⻓度,同时也是CPU的通⽤寄存器的⻓度。
因此,即使两个char类型的相加,在CPU执⾏时实际上也要先转换为CPU内整型操作数的标准长度。
通⽤CPU(general-purpose CPU)是难以直接实现两个8⽐特字节直接相加运算(虽然机器指令中可能有这种字节相加指令)。所以,表达式中各种⻓度可能⼩于int⻓度的整型值,都必须先转换为int或unsigned int,然后才能送⼊CPU去执⾏运算。
char a,b,c;
...
a = b + c;

 首先,b和c被提升为整形然后运算赋给a。

如何进行整形提升呢?

1. 有符号整数提升是按照变量的数据类型的符号位来提升的
2. ⽆符号整数提升,⾼位补0
//负数的整形提升
char c1 = -1;
变量c1的⼆进制位(补码)中只有8个⽐特位:
1111111
因为 char 为有符号的 char
所以整形提升的时候,⾼位补充符号位,即为1
提升之后的结果是:
11111111111111111111111111111111
//正数的整形提升
char c2 = 1;
变量c2的⼆进制位(补码)中只有8个⽐特位:
00000001
因为 char 为有符号的 char
所以整形提升的时候,⾼位补充符号位,即为0
提升之后的结果是:
00000000000000000000000000000001
//⽆符号整形提升,⾼位补0

结语

有很多朋友问为什么以武器大师来做标题,这里结尾给大家解释一下,因为我觉得它就像不同人手中不同的工具,比如算数操作符像是数学家手中的计算器,关系操作符像是侦探手中的证据对比工具,逻辑操作符类似于法官手中的判决书,位操作符更像电路工程师的开关和转换器,赋值操作符像是建筑师手中的蓝图和材料......

其实我们学习每样东西都是,虽然有时很抽象,但是我们总能找到解决办法。

“细想全是问题,去做全是答案”。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/425660.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【MySQL】SQL 优化

MySQL - SQL 优化 1. 在 MySQL 中&#xff0c;如何定位慢查询&#xff1f; 1.1 发现慢查询 现象&#xff1a;页面加载过慢、接口压力测试响应时间过长&#xff08;超过 1s&#xff09; 可能出现慢查询的场景&#xff1a; 聚合查询多表查询表数据过大查询深度分页查询 1.2 通…

2023 版王道单科书勘误汇总(3.30)

注:因2023版对题目编号做了优化“历年真题全部放最后、且按年份排序”&#xff0c;以方便大家根据需要保留某些年份的真题作为最后的模拟。所以造成了一些题目和解析的编号错误。 数据结构: P11 P20 P56 P278 P326 “2.”中第 3 行”题 5改成”9”&#xff0c;第6行”题 8”改成…

线性表——单链表的增删查改

本节复习链表的增删查改 首先&#xff0c; 链表不是连续的&#xff0c; 而是通过指针联系起来的。 如图&#xff1a; 这四个节点不是连续的内存空间&#xff0c; 但是彼此之间使用了一个指针来连接。 这就是链表。 现在我们来实现链表的增删查改。 目录 单链表的全部接口…

【EAI 027】Learning Interactive Real-World Simulators

Paper Card 论文标题&#xff1a;Learning Interactive Real-World Simulators 论文作者&#xff1a;Mengjiao Yang, Yilun Du, Kamyar Ghasemipour, Jonathan Tompson, Leslie Kaelbling, Dale Schuurmans, Pieter Abbeel 作者单位&#xff1a;UC Berkeley, Google DeepMind, …

探索设计模式的魅力:备忘录模式揭秘-实现时光回溯、一键还原、后悔药、历史的守护者和穿越时空隧道

​&#x1f308; 个人主页&#xff1a;danci_ &#x1f525; 系列专栏&#xff1a;《设计模式》 &#x1f4aa;&#x1f3fb; 制定明确可量化的目标&#xff0c;并且坚持默默的做事。 备忘录模式揭秘-实现时光回溯、一键还原、后悔药和穿越时空隧道 文章目录 一、案例场景&…

19.1 SpringBoot入门

19.1 SpringBoot入门 1. SpringBoot1.1 简介1.2 核心特点1.3 SpringBoot演变1.4 SpringBoot版本1. SpringBoot 1.1 简介 1.2 核心特点

【系统分析师】-计算机组成结构

1、计算机结构 2、存储系统 Cache是访问最快 DRAM是存取最快 先来先服务 FCFS&#xff1a;按照磁道号访问顺序 最短寻道时间优先SSTF&#xff1a;查找下一个最少的磁道数。柱面相同找磁头、磁头相同找扇区 3、数据传输控制方式 4、总线 总线&#xff1a; 分 时 传 输 &#…

十四、计算机视觉-形态学梯度

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 一、梯度的概念二、梯度的应用三、梯度如何实现 一、梯度的概念 形态学梯度&#xff08;Morphological Gradient&#xff09;是数字图像处理中的一种基本操作&…

C++学习笔记:二叉搜索树

二叉搜索树 什么是二叉搜索树?搜索二叉树的操作查找插入删除 二叉搜索树的应用二叉搜索树的代码实现K模型:KV模型 二叉搜索树的性能怎么样? 什么是二叉搜索树? 二叉搜索树又称二叉排序树&#xff0c;它或者是一棵空树&#xff0c;或者是具有以下性质的二叉树: 若它的左子树…

数据处理——一维数组转列向量(分割时间序列为数据块时的问题)

记录在处理数据时被磕绊了一下的一个处理细节。 1.想要达到的要求 在某次滑动窗口取样时间序列数据时&#xff0c;我得到如下一个以一维数组为元素的列表&#xff1a; 对于如上输出列表中的每个一维数组&#xff0c;我希望将其转换为下图中的形式&#xff0c;简单说就是希望他…

3. springboot中集成部署vue3

1. vue3构建 构建命令 npm run build&#xff0c; 构建的结果在disc目录&#xff1a; 2. springboot集成 2.1 拷贝vue3构建结果到springboot resources/static目录 2.2 springboot pom依赖 添加thymeleaf依赖 <dependency><groupId>org.springframework.boot</…

文件操作命令touch、cat、more、cp、mv

touch 创建文件 1&#xff09;可以通过touch命令创建文件。 2&#xff09;语法&#xff1a; touch Linux路径 3&#xff09;touch命令无选项&#xff0c;参数必填&#xff0c;表示要创建的文件路径&#xff0c;相对、绝对、特殊路径符均可以使用。 注&#xff1a;以 d 开头的…

PlantUML - 时序图

时序图主要内容 下面是一个简单的时序图&#xff0c;我们可以很容易并且美观的表达我们的交互流程&#xff0c;只需要在箭头的两边指定一个名字&#xff0c;加上描述即可&#xff1a; startuml bkloanapply -> bkloanapprove : request bkloanapprove --> bkloanapply :…

LeetCode 刷题 [C++] 第215题.数组中的第K个最大元素

题目描述 给定整数数组 nums 和整数 k&#xff0c;请返回数组中第 k 个最大的元素。 请注意&#xff0c;你需要找的是数组排序后的第 k 个最大的元素&#xff0c;而不是第 k 个不同的元素。 你必须设计并实现时间复杂度为 O(n) 的算法解决此问题。 题目分析 根据题意分析&…

C++入门和基础

目录 文章目录 前言 一、C关键字 二、命名空间 2.1 命名空间的定义 2.2 命名空间的使用 2.3 标准命名空间 三、C输入&输出 四、缺省参数 4.1 缺省参数的概念 4.2 缺省参数的分类 五、函数重载 5.1 函数重载的简介 5.2 函数重载的分类 六、引用 6.1 引用的…

WordPress介绍(开源内容管理系统(CMS),一个用于构建和管理网站的平台)

文章目录 Introduction to WordPress: Powering the Web with Simplicity and Flexibility&#xff08;WordPress简介&#xff1a;以简洁和灵活性驱动万维网&#xff09;Overview of WordPress&#xff08;WordPress概述&#xff09;Evolution of WordPress&#xff08;WordPre…

华为od机试C卷-最长表达式求值

1 题目描述 提取字符串中的最长合法简单数学表达式子串&#xff0c;字符串长度最长的&#xff0c;并计算表达式的值&#xff0c;如果没有返回0。简单数学表达式只能包含以下内容0-9 数字&#xff0c;符号* 说明: 1.所有数字&#xff0c;计算结果都不超过 long 2.如果有多个长…

基于yolov5的草莓成熟度检测系统,可进行图像目标检测,也可进行视屏和摄像检测(pytorch框架)【python源码+UI界面+功能源码详解】

功能演示&#xff1a; 基于yolov5的草莓成熟度检测系统&#xff0c;系统既能够实现图像检测&#xff0c;也可以进行视屏和摄像实时检测_哔哩哔哩_bilibili &#xff08;一&#xff09;简介 基于yolov5的草莓成熟度系统是在pytorch框架下实现的&#xff0c;这是一个完整的项目…

【XIAO ESP32S3 sense 通过 ESPHome 与 Home Assistant 连接】

XIAO ESP32S3 sense 通过 ESPHome 与 Home Assistant 连接 1. 什么是 ESPHome 和 Home Assistant&#xff1f;2. 软件准备3. 开始4. 将 Grove 模块与 ESPHome 和 Home Assistant 连接5. Grove 连接和数据传输6. Grove -智能空气质量传感器 &#xff08;SGP41&#xff09;7. OV2…

自学Python笔记总结(2——了解)

网络了解 网络调试助手 NetAssist.exe NetAssist.exe 使用方法请自行寻找 UDP协议 &#xff08;只能一来一回的的发消息&#xff0c;不可连续发送&#xff09; UDP 是User Datagram Protocol的简称&#xff0c; 中文名是用户数据报协议。在通信开始之前&#xff0c;不需要建…