【大数据Hive】hive 多字段分隔符使用详解

目录

一、前言

二、hive默认分隔符规则以及限制

2.1 正常示例:单字节分隔符数据加载示例

2.2 特殊格式的文本数据,分隔符为特殊字符

2.2.1 文本数据的字段中包含了分隔符

三、突破默认限制规则约束

3.1  数据加载不匹配情况 1

3.2  数据加载不匹配情况 2

3.3  解决方案一:替换分隔符

3.4  解决方案二:RegexSerDe正则加载

问题一处理过程:

问题二处理过程:

3.5  解决方案三:自定义InputFormat

3.5.1 操作流程

四、URL解析函数

4.1 URL基本组成

4.1.1 parse_url

4.1.2 问题分析

4.1.3 parse_url_tuple

4.1.4 案例操作演示


一、前言

分隔符是hive在建表的时候要考虑的一个重要因素,根据要加载的原始数据的格式不同,通常数据文件中的分隔符也有差异,因此可以在建表的时候指定分隔符,从而映射到hive的数据表。

二、hive默认分隔符规则以及限制

Hive默认序列化类是LazySimpleSerDe,其只支持使用单字节分隔符(char)来加载文本数据,例如逗号、制表符、空格等等,默认的分隔符为”\001”。

根据不同文件的不同分隔符,我们可以通过在创建表时使用 row format delimited 来指定文件中的分割符,确保正确将表中的每一列与文件中的每一列实现一一对应的关系。

如下是hive建表语法树中的一部分

在这个语法树中,大家熟知的分隔符即 DELIMITED 关键字,从语法中看出来默认情况下,其分割的都是单字节的数据,可现实情况下,实际要处理的文本数据内容可能要复杂很多,比如下面这些情况:

2.1 正常示例:单字节分隔符数据加载示例

下面这种文本格式的原始数据,可以直接使用没问题;

 

2.2 特殊格式的文本数据,分隔符为特殊字符

每一行数据的分隔符是多字节分隔符,例如:”||”、“--”等,如下面这样的数据;

2.2.1 文本数据的字段中包含了分隔符

每列的分隔符为空格,但是数据中包含了分割符,时间字段中也有空格;

三、突破默认限制规则约束

3.1  数据加载不匹配情况 1

文本内容数据格式如下

 建表sql,这里字段分隔符采用 || 与文本对应;

drop table singer;
create table singer(
    id string,
    name string,
    country string,
    province string,
    gender string,
    works string)
row format delimited fields terminated by '||';

load data local inpath '/usr/local/soft/selectdata/test01.txt' into table singer;

执行建表并加载数据

从数据来看,字段并没有解析完全,并且某些字段解析失败,和预期的不太一样,这是怎么回事呢?

3.2  数据加载不匹配情况 2

原始文本数据内容格式如下

建表并加载数据,这里采用空格作为分隔符;

drop table apachelog;
create table apachelog( ip string,stime string,mothed string,url string,policy string,stat string,body string)
row format delimited fields terminated by ' ';

load data local inpath '/usr/local/soft/selectdata/apache_web_access.log' into table apachelog;

执行完成后检查数据

从数据来看,某些字段的解析不仅错误,而且字段也出现了错位;

从上面两个简单的示例来看,如果要解析的原始文本数据中的某些字段自身包含了分隔符,这时候再使用默认的LazySimpleSerDe序列化加载数据时,将得不到预期的结果,出现数据解析错误的情况。

关于上述问题,下面提几种常用的解决办法。

3.3  解决方案一:替换分隔符

在第一个示例中的数据,要想使用默认分隔符,可以考虑对原始数据进行预处理,将双|转换为单个|后再导入;

至于转换的过程,可以人工处理,也可以使用MR程序处理,使用MR程序处理的话可以参考下面的伪代码,

package bigdata.itcast.cn.hbase.mr;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

import java.io.IOException;

/**
 * @ClassName ChangeSplitCharMR
 * @Description TODO MapReduce实现将多字节分隔符转换为单字节符
 * @Create By  itcast
 */
public class ChangeSplitCharMR extends Configured implements Tool {
    public int run(String[] arg) throws Exception {
        /**
         * 构建Job
         */
        Job job = Job.getInstance(this.getConf(),"changeSplit");
        job.setJarByClass(ChangeSplitCharMR.class);

        /**
         * 配置Job
         */
        //input:读取需要转换的文件
        job.setInputFormatClass(TextInputFormat.class);
        Path inputPath = new Path("datas/split/test01.txt");
        FileInputFormat.setInputPaths(job,inputPath);

        //map:调用Mapper
        job.setMapperClass(ChangeSplitMapper.class);
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(NullWritable.class);

        //reduce:不需要Reduce过程
        job.setNumReduceTasks(0);

        //output
        job.setOutputFormatClass(TextOutputFormat.class);
        Path outputPath = new Path("datas/output/changeSplit");
        TextOutputFormat.setOutputPath(job,outputPath);

        /**
         * 提交Job
         */
        return job.waitForCompletion(true) ? 0 : -1;
    }

    //程序入口
    public static void main(String[] args) throws Exception {
        //调用run
        Configuration conf = new Configuration();
        int status = ToolRunner.run(conf, new ChangeSplitCharMR(), args);
        System.exit(status);
    }


    public static class ChangeSplitMapper extends Mapper<LongWritable,Text,Text,NullWritable>{
        //定义输出的Key
        private Text outputKey = new Text();
        //定义输出的Value
        private NullWritable outputValue = NullWritable.get();

        @Override
        protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
            //获取每条数据
            String line = value.toString();
            //将里面的||转换为|
            String newLine = line.replaceAll("\\|\\|", "|");
            //替换后的内容作为Key
            this.outputKey.set(newLine);
            //输出结果
            context.write(this.outputKey,this.outputValue);
        }
    }
}

3.4  解决方案二:RegexSerDe正则加载

顾名思义就是使用hive提供的相关正则的语法来处理这个问题,为什么呢?因为hive内置了很多SerDe类;

Hive内置的SerDe

  • 除了使用最多的LazySimpleSerDe,Hive该内置了很多SerDe类;
  • 官网地址:https://cwiki.apache.org/confluence/display/Hive/SerDe;
  • 多种SerDe用于解析和加载不同类型的数据文件,常用的有ORCSerDe 、RegexSerDe、JsonSerDe等;

1、RegexSerDe用来加载特殊数据的问题,使用正则匹配来加载数据;

2、根据正则表达式匹配每一列数据;

官网参考文档

针对上面演示时的问题,来看看如何使用这种方式来解决,比如第一份数据,针对这份数据,只需要写一个正则,能够识别到其中的分隔符双 || ,将建表时的字段分割符使用这个正则,然后加载数据的时候就可以把hive解析出预期的数据格式了;

使用正则Regex处理这两个问题,下面看具体的操作演示

问题一处理过程:

建表并加载数据

--如果表已存在就删除表
drop table if exists singer;
--创建表
create table singer(id string,--歌手id
                    name string,--歌手名称
                    country string,--国家
                    province string,--省份
                    gender string,--性别
                    works string)--作品
--指定使用RegexSerde加载数据
ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.RegexSerDe'
WITH SERDEPROPERTIES ("input.regex" = "([0-9]*)\\|\\|(.*)\\|\\|(.*)\\|\\|(.*)\\|\\|(.*)\\|\\|(.*)");

--加载数据
load data local inpath '/usr/local/soft/selectdata/test01.txt' into table singer;

执行过程

检查数据发现,通过这种方式数据就能正确的加载了;

问题二处理过程:

创建表并加载数据,使用正则处理

--如果表存在,就删除表
drop table if exists apachelog;
--创建表
create table apachelog(
                          ip string,      --IP地址
                          stime string,    --时间
                          mothed string,  --请求方式
                          url string,     --请求地址
                          policy string,  --请求协议
                          stat string,    --请求状态
                          body string     --字节大小
)
--指定使用RegexSerde加载数据
    ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.RegexSerDe'
--指定正则表达式
        WITH SERDEPROPERTIES (
        "input.regex" = "([^ ]*) ([^}]*) ([^ ]*) ([^ ]*) ([^ ]*) ([0-9]*) ([^ ]*)"
        ) stored as textfile ;


load data local inpath '/usr/local/soft/selectdata/apache_web_access.log' into table apachelog;

执行过程

检查数据发现,通过这种方式数据就能正确的加载了;

3.5  解决方案三:自定义InputFormat

Hive中也允许使用自定义InputFormat来解决以上问题,通过在自定义InputFormat,来自定义解析逻辑实现读取每一行的数据。

下面是官方文档关于该方案的说明; 

3.5.1 操作流程

自定义InputFormat,与MapReudce中自定义InputFormat一致,继承TextInputFormat,下面是完整的代码;

自定义UserInputFormat

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.*;

import java.io.IOException;

/**
 * @ClassName UserInputFormat
 * @Description TODO 用于实现自定义InputFormat,读取每行数据
 */

public class UserInputFormat extends TextInputFormat {
    @Override
    public RecordReader<LongWritable, Text> getRecordReader(InputSplit genericSplit, JobConf job,
                                                            Reporter reporter) throws IOException {
        reporter.setStatus(genericSplit.toString());
        UserRecordReader reader = new UserRecordReader(job,(FileSplit)genericSplit);
        return reader;
    }
}

UserRecordReader

用于自定义读取器,在自定义InputFormat中使用,将读取到的每行数据中的||替换为|

代码如下

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.fs.Seekable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.compress.*;
import org.apache.hadoop.mapred.FileSplit;
import org.apache.hadoop.mapred.LineRecordReader;
import org.apache.hadoop.mapred.RecordReader;

import java.io.IOException;
import java.io.InputStream;

/**
 * @ClassName UserRecordReader
 * @Description TODO 用于自定义读取器,在自定义InputFormat中使用,将读取到的每行数据中的||替换为|
 */


public class UserRecordReader implements RecordReader<LongWritable, Text> {
    private static final Log LOG = LogFactory.getLog(LineRecordReader.class.getName());
    int maxLineLength;
    private CompressionCodecFactory compressionCodecs = null;
    private long start;
    private long pos;
    private long end;
    private LineReader in;
    private Seekable filePosition;
    private CompressionCodec codec;
    private Decompressor decompressor;

    public UserRecordReader(Configuration job, FileSplit split) throws IOException {
        this.maxLineLength = job.getInt("mapred.linerecordreader.maxlength", Integer.MAX_VALUE);
        start = split.getStart();
        end = start + split.getLength();
        final Path file = split.getPath();
        compressionCodecs = new CompressionCodecFactory(job);
        codec = compressionCodecs.getCodec(file);
        FileSystem fs = file.getFileSystem(job);
        FSDataInputStream fileIn = fs.open(split.getPath());
        if (isCompressedInput()) {
            decompressor = CodecPool.getDecompressor(codec);
            if (codec instanceof SplittableCompressionCodec) {
                final SplitCompressionInputStream cIn = ((SplittableCompressionCodec) codec)
                        .createInputStream(fileIn, decompressor, start, end,
                                SplittableCompressionCodec.READ_MODE.BYBLOCK);
                in = new LineReader(cIn, job);
                start = cIn.getAdjustedStart();
                end = cIn.getAdjustedEnd();
                filePosition = cIn; // take pos from compressed stream
            } else {
                in = new LineReader(codec.createInputStream(fileIn, decompressor), job);
                filePosition = fileIn;
            }
        } else {
            fileIn.seek(start);
            in = new LineReader(fileIn, job);
            filePosition = fileIn;
        }
        if (start != 0) {
            start += in.readLine(new Text(), 0, maxBytesToConsume(start));
        }
        this.pos = start;
    }

    private boolean isCompressedInput() {
        return (codec != null);
    }

    private int maxBytesToConsume(long pos) {
        return isCompressedInput() ? Integer.MAX_VALUE : (int) Math.min(Integer.MAX_VALUE, end - pos);
    }

    private long getFilePosition() throws IOException {
        long retVal;
        if (isCompressedInput() && null != filePosition) {
            retVal = filePosition.getPos();
        } else {
            retVal = pos;
        }
        return retVal;
    }

    public LongWritable createKey() {
        return new LongWritable();
    }

    public Text createValue() {
        return new Text();
    }

    /**
     * Read a line.
     */
    public synchronized boolean next(LongWritable key, Text value) throws IOException {
        while (getFilePosition() <= end) {
            key.set(pos);
            int newSize = in.readLine(value, maxLineLength, Math.max(maxBytesToConsume(pos), maxLineLength));
            String str = value.toString().replaceAll("\\|\\|", "\\|");
            value.set(str);
            pos += newSize;
            if (newSize == 0) {
                return false;
            }
            if (newSize < maxLineLength) {
                return true;
            }
            LOG.info("Skipped line of size " + newSize + " at pos " + (pos - newSize));
        }
        return false;
    }

    public float getProgress() throws IOException {
        if (start == end) {
            return 0.0f;
        } else {
            return Math.min(1.0f, (getFilePosition() - start) / (float) (end - start));
        }
    }

    public synchronized long getPos() throws IOException {
        return pos;
    }

    public synchronized void close() throws IOException {
        try {
            if (in != null) {
                in.close();
            }
        } finally {
            if (decompressor != null) {
                CodecPool.returnDecompressor(decompressor);
            }
        }
    }

    public static class LineReader extends org.apache.hadoop.util.LineReader {
        LineReader(InputStream in) {
            super(in);
        }

        LineReader(InputStream in, int bufferSize) {
            super(in, bufferSize);
        }

        public LineReader(InputStream in, Configuration conf) throws IOException {
            super(in, conf);
        }
    }
}

本地打成jar包并上传到服务器

使用命令上传jar到hive的依赖包目录

重新创建表,加载数据,同时指定InputFormat为自定义的InputFormat

--如果表已存在就删除表
drop table if exists singer;

--创建表
create table singer(
    id string,--歌手id
    name string,--歌手名称
    country string,--国家
    province string,--省份
    gender string,--性别
    works string)
--指定使用分隔符为|
row format delimited fields terminated by '|'
--指定使用自定义的类实现解析
stored as
inputformat 'bigdata.com.congge.hive.mr.UserInputFormat'
outputformat 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat';

--加载数据
load data local inpath '/usr/local/soft/selectdata/test01.txt' into table singer;

执行过程

 检查数据,可以发现通过这种方式也可以成功的将数据加载到表中;

小结

当数据文件中出现多字节分隔符或者数据中包含了分隔符时,会导致数据加载与实际表的字段不匹配的问题,基于这个问题我们提供了三种方案:

  • 替换分隔符;
  • 正则加载RegexSerde;
  • 自定义InputFormat;

其中替换分隔符无法解决数据字段中依然存在分隔符的问题,自定义InputFormat的开发成本较高,所以整体推荐使用正则加载的方式来实现对于特殊数据的处理。

四、URL解析函数

业务需求中,经常需要对用户的访问、用户的来源进行分析,用于支持运营和决策。例如对用户访问的页面进行统计分析,分析热门受访页面的Top10,观察大部分用户最喜欢的访问最多的页面等。如下截取的是统计到的一个关于网站访问地址稍微汇总数据。

业务上,需要对用户访问的页面进行统计分析,比如说:分析热门受访页面的Top10,观察大部分用户最喜欢的访问最多的页面等,然后通过图表的方式展示出来,以支撑运营和商业决策等;

4.1 URL基本组成

要想实现上面的受访分析、来源分析等业务,必须在实际处理数据的过程中,对用户访问的URL和用户的来源URL进行解析处理,获取用户的访问域名、访问页面、用户数据参数、来源域名、来源路径等信息。

在对URL进行解析时,我们要先了解URL的基本组成部分,再根据实际的需求从URL中获取对应的部分,例如一条URL由以下几个部分组成:

试想如果要将上面这个完整的URL的各个部分解析出来,你会怎么做呢?可以通过正则,或者字段分割,或者截取等方式达到目的,但这些都不是最好的方式,Hive中为了实现对URL的解析,专门提供了解析URL的函数parse_url和parse_url_tuple,在show functions中可以看到对应函数;

4.1.1 parse_url

语法格式

parse_url(url, partToExtract[, key]) - extracts a part from a URL

Parts: HOST, PATH, QUERY, REF, PROTOCOL, AUTHORITY, FILE, USERINFO key

比如尝试使用该函数解析上面图中的URL,可以看到HOST部分就被解析出来了;

或者解析参数信息

SELECT parse_url('http://www.congge.com/api/user/get?userId=001&name=jerry', 'QUERY');

SELECT parse_url('http://www.congge.com/api/user/get?userId=001&name=jerry', 'QUERY', 'name');

4.1.2 问题分析

上面这种解析方式,每次解析时只能解析出其中一个参数,也就是说,该函数为普通的一对一函数类型。如果想一次解析多个参数,需要使用多次函数,这就带来了很大的不便,这时候,parse_url_tuple函数就派上用场了。

4.1.3 parse_url_tuple

 parse_url_tuple函数是Hive中提供的基于parse_url的url解析函数,可以通过一次指定多个参数,从URL解析出多个参数的值进行返回多列,函数为特殊的一对多函数类型,即通常所说的UDTF函数类型。

语法格式

parse_url_tuple(url, partname1, partname2, ..., partnameN) - extracts N (N>=1) parts from a URL;

It takes a URL and one or multiple partnames, and returns a tuple;

4.1.4 案例操作演示

创建一张表并加载数据

drop table if exists tb_url;
--建表
create table tb_url(
    id int,
    url string
)row format delimited
fields terminated by '\t';

--加载数据
load data local inpath '/usr/local/soft/selectdata/url.txt' into table tb_url;

执行过程

检查数据是否加载成功

接下来体验下parse_url_tuple函数的使用

解析host和path

select parse_url_tuple(url,"HOST","PATH") as (host,path) from tb_url;

解析出 PROTOCOL,HOST和PATH

select parse_url_tuple(url,"PROTOCOL","HOST","PATH") as (protocol,host,path) from tb_url;

解析查询参数

select parse_url_tuple(url,"HOST","PATH","QUERY") as (host,path,query) from tb_url;

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/425072.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

力扣 第 125 场双周赛 解题报告 | 珂学家 | 树形DP + 组合数学

前言 整体评价 T4感觉有简单的方法&#xff0c;无奈树形DP一条路上走到黑了&#xff0c;这场还是有难度的。 T1. 超过阈值的最少操作数 I 思路: 模拟 class Solution {public int minOperations(int[] nums, int k) {return (int)Arrays.stream(nums).filter(x -> x <…

Premiere Pro:视频制作的瑞士军刀,让创意飞翔!

Premiere Pro&#xff0c;由Adobe公司推出的专业非线性视频编辑软件&#xff0c;已成为众多视频制作人员的首选工具。其功能之强大、操作之便捷&#xff0c;为视频制作带来了革命性的改变。 首先&#xff0c;Premiere Pro支持多种视频格式的导入和编辑&#xff0c;从剪辑、修剪…

【微服务】在Java体系中SpringCloud和SpringCloud Alibaba各通过哪些具体组件来实现微服务架构呢?

前面我们介绍了微服务架构的各个组件以及各组件的职责&#xff0c;在Java领域中&#xff0c;Spring可以说是无人不知无人不晓的&#xff0c;我们现代的企业级应用和互联网应用&#xff0c;很大一部分都是构建在Spring生态体系上的&#xff0c;同样&#xff0c;实现微服务架构的…

Redis常用指令,jedis与持久化

1.redis常用指令 第一个是key的常用指令&#xff0c;第二个是数据库的常用指令 前面的那些指令都是针对某一个数据类型操作的&#xff0c;现在的都是对所有的操作的 1.key常用指令 key应该设计哪些操作 key是一个字符串&#xff0c;通过key获取redis中保存的数据 对于key…

GCN原理回顾论文导读

Cora_dataset description Cora数据集是一个常用的学术文献用网络数据集&#xff0c;用于研究学术文献分类和图网络分析等任务。 该数据集由机器学习领域的博士论文摘要组成&#xff0c;共计2708篇论文&#xff0c;涵盖了7个不同的学科领域。每篇论文都有一个唯一的ID&#xf…

c++之旅——第四弹

大家好啊&#xff0c;这里是c之旅第三弹&#xff0c;跟随我的步伐来开始这一篇的学习吧&#xff01; 如果有知识性错误&#xff0c;欢迎各位指正&#xff01;&#xff01;一起加油&#xff01;&#xff01; 创作不易&#xff0c;希望大家多多支持哦&#xff01; 本篇文章的主…

【css面试题】BFC

参考文章1 参考文章2 什么是BFC BFC全称是Block Formatting Context&#xff0c;意思就是块级格式化上下文。你可以把BFC看做一个容器&#xff0c;容器里边的元素不会影响到容器外部的元素。 BFC的特性 BFC是一个块级元素&#xff0c;块级元素在垂直方向上依次排列。 BFC是…

QT 网络编程 8

1 基础知识 udp tcp 2 UDP 框架 客户端: QUdpSocket x; qint64 writeDatagram( const char *data, qint64 size, const QHostAddress &address, quint16 port );服务器: void Server::initSocket(){udpSocket new QUdpSocket(this);udpSocket->bind(QHostAddress…

【Redis | 第七篇】Redis过期策略、内存淘汰策略

文章目录 7.Redis过期策略、内存淘汰策略7.1过期策略7.2内存淘汰策略 7.Redis过期策略、内存淘汰策略 7.1过期策略 我们在set key的时候&#xff0c;可以给它设置一个过期时间&#xff0c;比如expire key 60。指定这key60s后过期。 60s后&#xff0c;redis是如何处理的嘛&am…

性别和年龄的视频实时监测项目

注意&#xff1a;本文引用自专业人工智能社区Venus AI 更多AI知识请参考原站 &#xff08;[www.aideeplearning.cn]&#xff09; 性别和年龄检测 Python 项目 首先介绍性别和年龄检测的高级Python项目中使用的专业术语 什么是计算机视觉&#xff1f; 计算机视觉是使计算机能…

ER-NeRF实时对话数字人模型训练与部署

ER-NeRF是基于NeRF用于生成数字人的方法&#xff0c;可以达到实时生成的效果。 下载源码 cd D:\Projects\ git clone https://github.com/Fictionarry/ER-NeRF cd D:\Projects\ER-NeRF 下载模型 准备面部解析模型 wget https://github.com/YudongGuo/AD-NeRF/blob/master/…

如何预估系统的瓶颈

如何预估系统的瓶颈 1 CPU1.1 CPU和同吞吐量 2 内存3 磁盘IO4 网络宽带5 数据库服务器6 APP服务端 CPU 使用率、内存占用、网络流量、磁盘 IO等指标&#xff0c;异常或者持续高位的情况下&#xff0c;都可能是系统瓶颈的表现。 1 CPU CPU使用率正常在70%左右&#xff0c;如果…

力扣hot100:42.接雨水

一、从单个水柱本身考虑 下标为i的水柱能接的雨水&#xff0c;取决于它左边最高的水柱 和 右边最高的水柱的最小值&#xff08;包括它本身&#xff09;。 为了理解这一性质&#xff0c;我们可以这样想象&#xff1a;取出左边最高和最边最高的水柱&#xff0c;将其比作一个碗的边…

绘制一下包络线

clear clc close all % 生成衰减信号 % 生成衰减曲线带有随机信号 fs 50; % 采样率 t 0:1/fs:100; % 时间向量&#xff0c;总时长为5秒 frequency0.5; signal exp(-0.05* t).*sin(2*pi*frequency*t); % 衰减曲线带有随机信号 % 计算包络线 [upper_envelope, lower_…

基于springboot+vue的教师工作量管理系统

博主主页&#xff1a;猫头鹰源码 博主简介&#xff1a;Java领域优质创作者、CSDN博客专家、阿里云专家博主、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战&#xff0c;欢迎高校老师\讲师\同行交流合作 ​主要内容&#xff1a;毕业设计(Javaweb项目|小程序|Pyt…

ImageGlass:重塑你的图片查看体验,探索视觉艺术

名人说&#xff1a;莫道桑榆晚&#xff0c;为霞尚满天。——刘禹锡&#xff08;刘梦得&#xff0c;诗豪&#xff09; 创作者&#xff1a;Code_流苏(CSDN)&#xff08;一个喜欢古诗词和编程的Coder&#x1f60a;&#xff09; 目录 一、什么是ImageGlass&#xff1f;①ImageGlass…

Python 编辑工具 Jupyter notebook

Jupyter notebook Jupyter Notebook是基于网页的用于交互计算的应用程序。其可被应用于全过程计算&#xff1a;开发、文档编写、运行代码和展示结果。——Jupyter Notebook官方介绍 官网&#xff1a;Project Jupyter | Home Jupyter Notebook 是一个开源的交互式计算环境&#…

数据结构——lesson5栈和队列详解

hellohello~这里是土土数据结构学习笔记&#x1f973;&#x1f973; &#x1f4a5;个人主页&#xff1a;大耳朵土土垚的博客 &#x1f4a5; 所属专栏&#xff1a;数据结构学习笔记 &#x1f4a5;对于顺序表链表有疑问的都可以在上面数据结构的专栏进行学习哦~感谢大家的观看与…

Java电梯模拟

Java电梯模拟 文章目录 Java电梯模拟前言一、UML类图二、代码三、测试 前言 此程序为单线程简单模拟电梯(初版)&#xff0c;如果存在问题或者设计不合理的地方&#xff0c;请大家帮忙指出。 一、UML类图 二、代码 电梯调度器 package cn.xx.evevator;import java.util.*;pub…

【间说八股】面试官:我看你这里用到了模板模式?你能不能说一下什么是模板模式

模板模式 行为模式&#xff1a;这类模式负责对象间的高效沟通和职责委派。 模板方法模式是一种行为设计模式&#xff0c; 它在超类中定义了一个算法的框架&#xff0c; 允许子类在不修改结构的情况下重写算法的特定步骤。 模板方法模式是一种行为设计模式&#xff0c;其核心思想…