LLM 系列——BERT——论文解读

一、概述

1、是什么

    是单模态“小”语言模型,是一个“Bidirectional Encoder Representations fromTransformers”的缩写,是一个语言预训练模型,通过随机掩盖一些词,然后预测这些被遮盖的词来训练双向语言模型(编码器结构)。可以用于句子分类、词性分类等下游任务,本身旨在提供一个预训练的基础权重。

2、亮点

    文章中总结为三点:

    * 展示了双向预训练对语言表示的重要性。

    * 预训练的特征表示对特定任务降低了精心设计架构的需求。

    * BERT 提高了 11 个 NLP 任务的最新指标。

PS

    * base版本整体结构和OpenAI的GPT是相同的,只是掩码机制不同,甚至训练数据和策略也尽可能可GPT相同来做对比,并验证了在下游任务的高效性。large是进行了模型缩放。

    * 但是如今2024年还是Open AI 的GPT这种纯解码器一统天下,并且后续针对bert的改进,反而移除一些本文的tick,比如NSP任务等。

    * 原版论文还是建议看看,因为本文是提供了一个预训练模型,然后可以用于各种下游任务(并且文章解释了怎么处理数据和改动模型),并且也简要介绍了对应的下游任务,可以对NLP领域有个很好的认识。

二、模型

    1、模型结构

       输入需要进行多种embedding处理,模型整体就是标准的transformer编码器,只不过针对不同的任务出入输出头稍有改动:

    1)预训练任务:两个loss,分别是预测掩码token和预测两个句子是不是连贯的。也就是后面的Mask LM 和NSP任务。文中训练了base 和 large两个版本。

    2)下游任务:主要分为四大类,两个句子的关系分类、单句分类(比如情感分类)、问答(不是生成模型,所以答案是提供的文本中的一个片段,预测起止点)、句子内次分类(比如实体识别)。    

    输入如下。针对不同的任务,BERT模型的输入可以是单句或者句对。对于每一个输入的Token,它的表征由其对应的词表征(Token Embedding)、段表征(Segment Embedding)和位置表征(Position Embedding)相加产生。其中BERT的分词是“Case-preserving WordPiece model”,它在分词的同时保留了原始文本的大小写信息。

    

    预训练整体对应的网络结构如下:

    不同的下游任务的模型结构如下图:

    下游任务对应到数据集

    2、模型亮点

    双向注意力训练的解码器,并且有单词和句子两个任务。

    PS

    可惜现在GPT的decoder 一统天下了。

三、数据

    1、数据标签

    对于英文模型,使用了Wordpiece模型来产生Subword从而减小词表规模;对于中文模型,直接训练基于字的模型。 具体因为涉及到预训练和不同类型的下游任务,这里稍微有点复杂,一条一条梳理。

    预训练目标:BERT预训练过程包含两个不同的预训练任务,分别是Masked Language Model和Next Sentence Prediction任务。

    下游任务:分为句子分类、token分类。

    1-1)Masked Language Model任务

    就是预测被mask掉的词,文章提出一种mask策略(这个过程发生在WordPiece tokenization之后,而且对所有token一视同仁,后面有对应的消融实验):在一个batch 内先随机选取15%的单词作为mask候选,然后对这15%单词进行二次抽样,其中80%需要被替换成[MASK]的词进行替换,10%的随机替换为其他词,10%保留原词。原因是:在微调时[MASK]总是不可见,会造成预训练和微调时的不一致。论文中的例子如下:

    

    1-2)Next Sentence Prediction任务

    模型输入需要附加一个起始Token,记为[CLS],对应最终的Hidden State(即Transformer的输出)可以用来表征整个句子,用于下游的分类任务。

    模型能够处理句间关系。为区别两个句子,用一个特殊标记符[SEP]进行分隔,另外针对不同的句子,将学习到的Segment Embeddings 加到每个Token的Embedding上。对于单句输入,只有一种Segment Embedding;对于句对输入,会有两种Segment Embedding。

    论文中的例子如下,构造方法是随机构造50%是成对的句子,50%不是成对的句子,并且也要保证整个句子长度小于512个token。和上面的mask策略是共同作用的。

    

    2-1)GLUE 句子分类下游任务

    可以为单个句子或者句子对。

    输入和预训练一样,有cls、sep token,没有Mask。

    输出使用cls token对应的最后一个隐层的向量作为句子的整体表示,仅仅引入一个全连接层,映射到分类类别数,计算标准的softmax 分类损失。

    2-2)SQuAD v1.1

    其实就是给定问题,在指定段落里面找答案的起止点,不需要改写答案。这里确实有点绕,所以再重复贴一下模型图。这里输入如下图,比较好理解。输出增加了两个可学习的verctor(就是两个变量分别称为S、E),然后对每个输出单词做点乘,计算为起点的概率(终点同理):。然后起点到终点的整个段落的概率定义如下:

    2-3)SQuAD v2.0

    我们将没有答案的问题视为在 [CLS] 标记处具有开始和结束的答案跨度。预测的时候没有对应答案得分Snull =S·C + E·C,有对应的答案的得分最大值,然后当,阈值t是在验证集使F1最大调节出来的。

    2-4)SWAG

    本身是多选,这里将问题分别匹配一个答案,构成N个文本对,然后对每个文本对单独像句子对分类任务一样,在cls token上训练分类器。    

    2、数据构成

    预训练

    为了和GPT作对比,数据等也尽可能相同:BERT使用BooksCorpus (800M words)、Wikipedia (2,500M words),其中GPT使用的仅仅为BooksCorpus (800M words)。

    下游任务

    MNLI:Multi-Genre Natural Language Inference,两个句子的蕴含分类任务。给定一对句子,目标是预测第二个句子是否是相对于第一个句子的蕴涵、矛盾或中性。

    QQP:Quora Question Pairs,两个句子分类任务。目标是确定 Quora (果壳问答网站,类似知乎)上提出的两个问题在语义上是否等价。

    QNLI:Question Natural Language Inference,标准的问答任务。被转换为二元分类任务,正例是(问题、句子)对,包含正确答案,负例是来自同一段落的(问题、句子),不包含答案。

    SST-2:Stanford Sentiment Treebank,二元单句分类任务,包括从电影评论中提取的句子及其情感的注释。

    CoLA:The Corpus of Linguistic Acceptability,二元单句分类任务,其目标是预测英语句子在语法上是否“可接受”。

    STS-B:The Semantic Textual Similarity Benchmark,一组从新闻标题和其他来源中提取的句子对。他们用从 1 到 5 的分数进行注释,表示两个句子在语义含义方面的相似程度。

    MRPC:Microsoft Research Paraphrase Corpus,从在线新闻源中自动提取的句子对组成,人工注释对中的句子在语义上是否等价。

    WNLI Winograd NLI:小型自然语言推理数据集,GLUE 网页指出,该数据集的构建存在问题。

    RTE:Recognizing Textual Entailment,类似于 MNLI 的二元蕴涵任务,但训练数据要少得多。

    SQuAD v1.1:10w个众包问题/答案对的集合。给定一个来自维基百科的段落和对应的问题,任务是预测答案在文章中的跨度(也就是起止点)。

    SQuAD v2.0:对比V1.1,还有可能对应的段落没有问题的答案。

    SWAG:Situations With Adversarial Generations,包含 113k 个句子对,用于评估常识推理。

    3、数据清洗

    可能都是开源数据,并且为了保持和Open AI相同,文章并没有提到如何清洗这两个数据源。

四、策略

    1、训练过程

    预训练

    单阶段训练,训练所有网络参数,两个任务的loss取平均。值得注意的一个预训练加速细节(原理是transformer的自注意力随着序列长度二次方增加运算量):使用序列长度为 128 训练90% 的Step,然后使用 512 序列长度训练其余10% 来学习位置嵌入。

    训练超参数如下:

    *bs = 256、sequence length = 512、Step = 100W,相当于:128,000 token/batch、训练了40个epoch。

    *学习率为 1e-4 的 Adam,β1 = 0.9,β2 = 0.999,L2 权重衰减为 0.01,学习率在前 10,000 步预热,学习率的线性衰减。

    *在所有层上使用 0.1 的 dropout 概率。

    *激活函数和GPT相同为gelu。

    *训练损失是平均掩码 LM 似然和平均下一句预测似然的总和。

    *BERTBASE 的训练是在4 cloud Pod (总共 16 个 TPU 芯片),LARGE 的训练是在 16 个 Cloud TPU pod(总共 64 个 TPU 芯片)上进行的。均需要 4 天完成训练。

    下游任务Finetune整体总结

    如模型结构部分,应用与不同的下游任务(不同下游任务都略有区别,大的数据集,比如10W+样本的对超参数选择不敏感),超参数整体和预训练相同,但是batch size、学习率、训练epoch不同,如下:

    *batch size 选择16 或32.

    *Learning rate (Adam): 5e-5, 3e-5, 2e-5。

    *epochs数: 2, 3, 4

    下游任务Finetune-GLUE句子分类

    主要在模型输出的增加一个分类层,对应输入的cls token。batch size 32 训练3 个epoch,学习率尝试5e-5, 4e-5, 3e-5, 2e-5并选择验证集效果最好的。

     注意:这里发现BERT large版本训练不稳定,采取的策略是随机多训练几个版本,然后选择验证集上效果好的,这里的随机包含:数据随机shuffle和分类层随机初始化。

    下游任务SQuAD v1.1句子分类

    batch size 32 训练3 个epoch,学习率5e-5。

    下游任务SQuAD v2.0句子分类

     batch size 48 训练2 个epoch,学习率5e-5。

    下游任务SWAG句子分类

    batch size 16 训练3 个epoch,学习率2e-5。

    2、推理过程

    暂无

五、结果

1、多维度对比

    四个下游任务,分别见四个表。

    GLUE:发现large版本结果都比base版本好(包含哪些训练数据很少的场景),并且好于Open AI。

    

    

2、消融实验

训练任务

    涉及:有无预测下一个句子任务(NSP)、MLM对比LTR任务(预测中间词和从左预测右面即GPT)。他的结果显示预测下一个句子能提升性能,MLM好于LTR。(PS:然而后面bert的改进去掉了NSP任务,GPT系列数据上来效果强悍。所以这些经验真的会随着数据和模型规模上来反而成为阻碍。)

模型大小

    除了模型的层数、隐层维度、head 头数外,其余训练超参一致。这里作者证明随着模型规模的提升,下游任务的性能也提升,即使下游任务数据很少也可以finetune(接一个分类头,并且bert的参数也更新),然后获得稳定提升(随着模型规模)。这里作者特别提到之前有人做实验,证明模型规模不能太大,不然反而性能会降低这里是通过特征的方式,没有finetune。

    PS:这里感觉有点后面GPT系列对齐的苗头了。

基于特征

    这里和图像领域不太一样哈,对应CLIP里面的叫Liner prob策略,也就是冻结bert参数,然后对bert的输出再训练一个分类器。而该论文的finetune就是全部bert跟着分类器更新参数。对比结果如下,证明bert的特征也挺好(当然低于finetune)。

训练时长(Step数)

    *与 500k 步相比,BERTBASE 在 1M 步上训练时在 MNLI 上实现了几乎 1.0% 的额外准确度。

    *MLM 模型的收敛速度略慢于 LTR 模型。然而,就绝对准确性而言,MLM 模型几乎很快就开始优于 LTR 模型。

不同的mask策略

    需要注意,对于基于特征的方法,将 BERT 的最后 4 层作为特征连接起来,这在第 5.3 节中被证明是最好的方法。其实差距不是特别大。

    

六、使用方法

    见git和上面的下游任务模型结构介绍部分,对不同下游任务不同。

七、待解决

 论文提到的缺点

    由于每个Batch中只有15%的词会被预测,因此模型的收敛速度比起单向的语言模型会慢,训练花费的时间会更长。(作者认为从提升收益的角度来看,付出的代价是值得的。)

 改进算法

    并且很多原始认为很有用的tick已经不再使用,比如预测句子任务。BERT的主要创新在于它的双向训练结构,它能够在预训练阶段同时考虑上下文中的左侧和右侧信息。自从BERT发布以来,许多研究者和工程师都在尝试改进这个模型。以下是一些BERT改进的论文总结:

1、RoBERTa(A Robustly Optimized BERT Pretraining Approach)

发现:BERT可能由于其训练过程没有被充分优化而受到限制。

改进:更长时间的训练、更大的数据集、更大的batch size、不使用Next Sentence Prediction(NSP)任务。

结果:在多个基准测试上取得了比原始BERT更好的结果。

2、ALBERT(A Lite BERT for Self-supervised Learning of Language Representations)

发现:BERT模型非常庞大,需要大量的内存和计算资源。

改进:参数共享、降低模型大小的同时保持性能。

结果:减小了模型的内存占用,同时在某些任务上保持或超越了BERT的性能。

3、DistilBERT(Distilling the Knowledge in a Neural Network)

发现:BERT模型过于庞大,对于某些应用来说不够高效。

改进:利用知识蒸馏技术,将BERT的知识转移到更小的模型。

结果:模型大小减少了40%,速度提升了60%,同时保持了97%的BERT性能。

4、XLNet(Generalized Autoregressive Pretraining for Language Understanding)

发现:BERT的双向上下文理解能力强,但是受限于其掩蔽语言模型(MLM)的预训练方式。

改进:结合了自回归语言模型和BERT的优点,提出了置换语言模型(PLM)。

结果:在多项NLP任务上超越了BERT和GPT的性能。

5、ERNIE(Enhanced Representation through kNowledge Integration)

发现:BERT没有充分利用外部知识,如实体、短语和语义关系等。

改进:整合了外部知识,通过实体掩蔽和短语掩蔽来增强语言表示。

结果:在特定任务上,如情感分析和实体识别,性能得到了显著提升。

6、SpanBERT(SpanBERT: Improving Pre-training by Representing and Predicting Spans)

发现:BERT的单个词掩蔽可能不足以捕捉到更长的依赖关系。

改进:专注于跨度的预测而不是单个词的预测,以更好地表示和预测文本跨度。

结果:在句子级和跨度级任务上均显示出改进。

八、参考链接

Transformer 源码解读:Transformer源码详解(Pytorch版本) - 知乎

bert 源码解读:Bert源码详解(Pytorch版本) - 知乎

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/424915.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

最新 Node 初始化 vue 项目报错(npm init vue@latest)以及配置淘宝镜像(cnpm)

最新 Node 初始化 vue 项目报错(npm init vuelatest)以及配置淘宝镜像(cnpm) PS E:\SpringBootBase\ProjectOne\big-event-vue> cnpm init vuelatest cnpm : The term ‘cnpm’ is not recognized as the name of a cmdlet, fu…

加密隧道技术

在现在的互联网上传输数据,首要考虑的就是安全。这关乎到你的隐私,个人信息,财产安全等等重大问题。如果你的程序本身传输的信息没有加密,也可以通过其他辅助方式让你的通信加密。一些工具的就是为了解决这样的场景的,…

文心一言 VS 讯飞星火 VS chatgpt (206)-- 算法导论15.4 3题

三、设计 LCS-LENGTH的带备忘的版本,运行时间为O(mn)。需要写代码的时候,请用go语言。 文心一言,代码正常运行: LCS-LENGTH(Longest Common Subsequence Length)问题的带备忘的版本通常指的是使用动态规划…

springboot+vue学生网上请假系统

学生网上请假系统 摘要 随着信息技术在管理上越来越深入而广泛的应用,管理信息系统的实施在技术上已逐步成熟。本文介绍了学生网上请假系统的开发全过程。通过分析学生网上请假系统管理的不足,创建了一个计算机管理学生网上请假系统的方案。文章介绍了…

社区店经营全攻略:为何成为创业者的首选?

在当今的创业环境中,社区店越来越受到创业者的关注和青睐。 作为一名开鲜奶吧5年的创业者,我见证了无数的实体项目,这篇文章,为大家深入解析社区店的优势,以及为何它成为了众多创业者的首选。 社区店的主要优势在于以…

自注意力机制(Self-Attention)

注意:本文引用自专业人工智能社区Venus AI 更多AI知识请参考原站(【http://www.aideeplearning.cn】) Transformer模型中最关键部分就是自注意力(Self-Attention)机制,正如 Transformer 的论文的标题是“…

ConcurrentHashMap的演进:从Java 8之前到Java 17的实现原理深度剖析

目录 一、引言二、Java 8之前的ConcurrentHashMap1、内部结构与初始化2、Segment类3、并发控制4、扩容与重哈希5、总结 三、Java 8中的ConcurrentHashMap1、数据结构2、并发控制2.1. CAS操作2.2. synchronized同步块 3、哈希计算与定位4、扩容与重哈希5、总结 四、Java 17中的C…

Docker知识点总结

二、Docker基本命令: Docker支持CentOs 6 及以后的版本; CentOs7系统可以直接通过yum进行安装,安装前可以 1、查看一下系统是否已经安装了Docker: yum list installed | grep docker 2、安装docker: yum install docker -y -y 表示自动确认…

安装Realtek Audio Driver失败[Error Code:-0001]

安装Realtek Audio Driver失败[Error Code:-0001] 首先来看一下我们遇到的问题GPT4的推荐解决方法(流水账)笔者自己真实有效的解决办法 首先来看一下我们遇到的问题 描述:在笔记本更新完电脑之后,没有自带声音驱动。然…

【LeetCode】升级打怪之路 Day 11:栈的应用、单调栈

今日题目: Problem 1: 栈的应用 155. 最小栈 | LeetCode20. 有效的括号 | LeetCode150. 逆波兰表达式求值 | LeetCode Problem 2: 单调栈 496. 下一个更大元素 I739. 每日温度503. 下一个更大元素 II 目录 Problem 1:栈 - “先进后出”的应用LC 155. 最…

2024龙年特别篇 -- 魔法指针 之 指针变量

目录 ​编辑 字符指针变量 字符指针 字符数组 关于字符数组的试题 数组指针变量 数组指针 利用指针数组打印数组 打印二维数组 数组作为形参 当形参为指针时(指针数组) 函数指针变量 利用函数实现加法输出的多种方式 字符指针变量 字符指针 char …

[NSSCTF 2nd] web复现

1.php签到 <?phpfunction waf($filename){$black_list array("ph", "htaccess", "ini");$ext pathinfo($filename, PATHINFO_EXTENSION);foreach ($black_list as $value) {if (stristr($ext, $value)){return false;}}return true; }if(i…

CKA考生注意:这些Deployment要点能助你一臂之力!

往期精彩文章 : 提升CKA考试胜算&#xff1a;一文带你全面了解RBAC权限控制&#xff01;揭秘高效运维&#xff1a;如何用kubectl top命令实时监控K8s资源使用情况&#xff1f;CKA认证必备&#xff1a;掌握k8s网络策略的关键要点提高CKA认证成功率&#xff0c;CKA真题中的节点维…

蓝桥杯集训·每日一题2024 (前缀和)

笔记&#xff1a; 例题&#xff1a; #include<bits/stdc.h> using namespace std; const int N 5000010; char str[N]; int s[N]; int main(){int t;cin>>t;for(int a1;a<t;a){int n;cin>>n;scanf("%s",str1);for(int i1;i<n;i){s[i]s[i-1]…

重磅!交通领域顶级会议TRB会议将进行重大改革

美国交通研究委员会年会&#xff08;Transportation Research Board annual meeting,以下简称TRB会议&#xff09;是由美国交通研究委员会举办的交通领域的国际顶级会议。该会议每年举办一次&#xff0c;在华盛顿特区召开。TRB会议是交通研究领域知名度最高的学术会议之一&…

AI又进化了

B站&#xff1a;啥都会一点的研究生公众号&#xff1a;啥都会一点的研究生 一直想做但没做的板块&#xff0c;整理一段时间内AI领域的前沿动态&#xff08;符合大多粉丝研究领域/感兴趣方向&#xff09;&#xff0c;了解了解外面世界发展成啥样了&#xff0c;一起看看吧~ 谷歌…

跟 AI 学 StarRocks:简介

因为要支持公司的 BI 建设&#xff0c;团队引入了 StarRocks 数据库&#xff0c;此前我没有了解过此项技术&#xff0c;不过因为有架构师引入了此项技术栈&#xff0c;就顺便学习一下。 一、什么是 MPP 数据库&#xff1f; MPP 数据库指的是大规模并行处理&#xff08;Massiv…

Hololens 2应用开发系列(2)——MRTK基础知识及配置文件配置(上)

Hololens 2应用开发系列&#xff08;2&#xff09;——MRTK基础知识及配置文件配置 一、前言二、MRTK基础知识2.1 MRTK概述2.2 MRTK运行逻辑2.3 MRTK配置文件介绍2.4 MRTK服务 三、配置文件使用3.1 总配置文件3.2 相机配置3.3 其他配置 参考文献 一、前言 在前面的文章中&…

DDR5 新特性概述

主页&#xff1a; 元存储博客 文章目录 前言1. SDR 与 DDR2. DDR5 的新特点总结 前言 DDR5 带来更快的处理速度和更大的存储空间&#xff0c;为云计算、大数据等领域的发展提供了强有力的支持。 1. SDR 与 DDR single data rate&#xff0c; 1 个时钟周期做一次数据传输 do…

更改elementui的箭头图片以及位置

//更改箭头位置 .el-tree-node__content > .el-tree-node__expand-icon {position: absolute;right: 12px; }//更改箭头图片 .el-tree-node__expand-icon {transform: rotate(-90deg); } .el-tree-node__expand-icon.expanded {transform: rotate(0deg); } // 有子节点 且已…