YOLOv9独家原创改进|增加SPD-Conv无卷积步长或池化:用于低分辨率图像和小物体的新 CNN 模块


专栏介绍:YOLOv9改进系列 | 包含深度学习最新创新,主力高效涨点!!!


一、文章摘要

        卷积神经网络(CNNs)在计算即使觉任务中如图像分类和目标检测等取得了显著的成功。然而,当图像分辨率较低或物体较小时,它们的性能会灾难性下降。这是由于现有CNN常见的设计体系结构中有缺陷,即使用卷积步长和/或池化层,这导致了细粒度信息的丢失和较低效的特征表示的学习。为此,我们提出了一个名为SPD-Conv的新的CNN构建块来代替每个卷积步长和每个池化层(因此完全消除了它们)。SPD-Conv由一个空间到深度(SPD)层和一个无卷积步长(Conv)层组成,可以应用于大多数CNN体系结构。我们从两个最具代表性的计算即使觉任务:目标检测和图像分类来解释这个新设计。然后,我们将SPD-Conv应用于YOLOv5和ResNet,创建了新的CNN架构,并通过经验证明,我们的方法明显优于最先进的深度学习模型,特别是在处理低分辨率图像和小物体等更困难的任务时。

适用检测目标:   通用下采样模块


二、SPD-Conv模块详解

        论文地址:   https://arxiv.org/pdf/2208.03641v1.pdf

 2.1 模块简介

        SPD-Conv的主要思想:   SPD- conv由一个空间到深度(SPD)层和一个非跨步卷积层组成。SPD组件推广了一种(原始)图像转换技术来对CNN内部和整个CNN的特征映射进行下采样。

 总结: 一种通过卷积与线性变化实现的新下采样模块。

 SPD- conv模块的原理图


三、SPD-Conv模块使用教程

3.1 SPD-Conv模块的代码

class SPDConv(nn.Module):
    # Changing the dimension of the Tensor
    def __init__(self, inc, ouc, dimension=1):
        super().__init__()
        self.d = dimension
        self.conv = Conv(inc * 4, ouc, k=3)

    def forward(self, x):
        x = torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1)
        x = self.conv(x)
        return x

3.2 在YOlO v9中的添加教程

阅读YOLOv9添加模块教程或使用下文操作

        1. 将YOLOv9工程中models下common.py文件中增加模块的代码。

         2. 将YOLOv9工程中models下yolo.py文件中的第718行(可能因版本变化而变化)增加以下代码。

        elif m in (SPDConv,):
            args = [ch[f], ch[f]]

3.3 运行配置文件

# YOLOv9
# Powered bu https://blog.csdn.net/StopAndGoyyy

# parameters
nc: 80  # number of classes
#depth_multiple: 0.33  # model depth multiple
depth_multiple: 1  # model depth multiple
#width_multiple: 0.25  # layer channel multiple
width_multiple: 1  # layer channel multiple
#activation: nn.LeakyReLU(0.1)
#activation: nn.ReLU()

# anchors
anchors: 3

# YOLOv9 backbone
backbone:
  [
   [-1, 1, Silence, []],  
   
   # conv down
   [-1, 1, Conv, [64, 3, 2]],  # 1-P1/2

   # conv down
   [-1, 1, Conv, [128, 3, 2]],  # 2-P2/4

   # elan-1 block
   [-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 3

   # avg-conv down
   [-1, 1, ADown, [256]],  # 4-P3/8

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 5

   # avg-conv down
   [-1, 1, ADown, [512]],  # 6-P4/16

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 7

   # avg-conv down
   [-1, 1, SPDConv, []],  # 8-P5/32

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 9
  ]

# YOLOv9 head
head:
  [
   # elan-spp block
   [-1, 1, SPPELAN, [512, 256]],  # 10

   # up-concat merge
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 7], 1, Concat, [1]],  # cat backbone P4

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 13

   # up-concat merge
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 5], 1, Concat, [1]],  # cat backbone P3

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [256, 256, 128, 1]],  # 16 (P3/8-small)

   # avg-conv-down merge
   [-1, 1, ADown, [256]],
   [[-1, 13], 1, Concat, [1]],  # cat head P4

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 19 (P4/16-medium)

   # avg-conv-down merge
   [-1, 1, ADown, [512]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 22 (P5/32-large)
   
   
   # multi-level reversible auxiliary branch
   
   # routing
   [5, 1, CBLinear, [[256]]], # 23
   [7, 1, CBLinear, [[256, 512]]], # 24
   [9, 1, CBLinear, [[256, 512, 512]]], # 25
   
   # conv down
   [0, 1, Conv, [64, 3, 2]],  # 26-P1/2

   # conv down
   [-1, 1, Conv, [128, 3, 2]],  # 27-P2/4

   # elan-1 block
   [-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 28

   # avg-conv down fuse
   [-1, 1, ADown, [256]],  # 29-P3/8
   [[23, 24, 25, -1], 1, CBFuse, [[0, 0, 0]]], # 30  

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 31

   # avg-conv down fuse
   [-1, 1, ADown, [512]],  # 32-P4/16
   [[24, 25, -1], 1, CBFuse, [[1, 1]]], # 33 

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 34

   # avg-conv down fuse
   [-1, 1, ADown, [512]],  # 35-P5/32
   [[25, -1], 1, CBFuse, [[2]]], # 36

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 37
   
   
   
   # detection head

   # detect
   [[31, 34, 37, 16, 19, 22], 1, DualDDetect, [nc]],  # DualDDetect(A3, A4, A5, P3, P4, P5)
  ]

3.4 训练过程


欢迎关注!


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/423996.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

电源通常向计算机内部的各种组件提供的三种电压:1

本文将与您分享电源通常为计算机内部各个组件提供的三种电压是什么。 小编觉得还是比较实用的,所以分享给大家,作为参考。 下面就跟随小编一起来看看吧。 电源通常为电脑内部的各个部件提供三种电压: 1. 5V,主要供给主…

【k8s管理--两种方式安装prometheus】

1、k8s的监控方案 1.1 Heapster Heapster是容器集群监控和性能分忻工具,天然的支持Kubernetes和CoreOS。 Kubernetes有个出名的监控agent–cAdvisor。在每个kubernetes Node上都会运行cAdvisor,它会收集本机以及容器的监控数(cpu,memory,filesystem,ne…

Matlab 机器人工具箱 RobotArm类

文章目录 1 RobotArm1.1 方法1.2 注意2 RobotArm.RobotArm3 RobotArm.cmove4 其他官网:Robotics Toolbox - Peter Corke 1 RobotArm 串联机械臂类 1.1 方法 方法描述plot显示机器人的图形表示teach驱动物理和图形机器人mirror使用机器人作为从机来驱动图形</

C++ 设计模式

文章目录 类图泛化实现关联聚合组合依赖总结 类内部的三种权限&#xff08;公有、保护、私有&#xff09;类的三种继承方式描述与图总结 面向对象七大原则单一职责原则&#xff08;Single Responsibility Principle&#xff09;里氏替换原则&#xff08;Liskov Substitution Pr…

C3_W2_Collaborative_RecSys_Assignment_吴恩达_中英_Pytorch

Practice lab: Collaborative Filtering Recommender Systems(实践实验室:协同过滤推荐系统) In this exercise, you will implement collaborative filtering to build a recommender system for movies. 在本次实验中&#xff0c;你将实现协同过滤来构建一个电影推荐系统。 …

【Memory协议栈】Memory Abstraction Interface模块介绍

目录 前言 正文 1.功能简介 2.关键概念 3.关键类型定义 3.1 MemIf_StatusType 3.2 MemIf_JobResultType 3.3 MemIf_ModeType 4.关键API定义 4.1 MemIf_SetMode 4.2 MemIf_Read 4.3 MemIf_Write 4.4 MemIf_Cancel 4.5 MemIf_GetStatus 4.6 MemIf_GetJobResult 4…

「滚雪球学Java」:集合(章节汇总)

咦咦咦&#xff0c;各位小可爱&#xff0c;我是你们的好伙伴——bug菌&#xff0c;今天又来给大家普及Java SE相关知识点了&#xff0c;别躲起来啊&#xff0c;听我讲干货还不快点赞&#xff0c;赞多了我就有动力讲得更嗨啦&#xff01;所以呀&#xff0c;养成先点赞后阅读的好…

Ocr之PaddleOcr模型训练

目录 一、系统环境 1 镜像拉取ppocr 进行部署 2 安装paddlepaddle 二、训练前的准备 1 下载源码 2 预模型下载 3 修改模型训练文件yml 4 编排训练集 5 执行脚本进行训练 6 需要修改文件夹名称 三、开始训练 1 执行训练命令 2 对第一次评估进行解释 3 引言 五、总…

【解决方案】ArcGIS Engine二次开发时,运行后出现“正尝试在 OS 加载程序锁内执行托管代码。不要尝试在 DllMain...”

我们在做ArcGIS Engine二次开发时&#xff0c;特别是新手&#xff0c;安装好了开发环境&#xff0c;满怀信心的准备将按照教程搭建好的框架在Visual Studio中进行运行。点击运行后&#xff0c;却出现了“正尝试在 OS 加载程序锁内执行托管代码。不要尝试在 DllMain 或映像初始化…

2023年09月CCF-GESP编程能力等级认证Scratch图形化编程四级真题解析

一、单选题(共15题,共30分) 第1题 人们所使用的手机上安装的 App 通常指的是( )。 A:一款操作系统 B:一款应用软件 C:一种通话设备 D:以上都不对 答案:B 第2题 下列流程图的输出结果是?( ) A:9 B:7 C:5 D:11 答案:A 第3题 默认小猫角色,执行下列程序…

【Linux】软件管理yum | 编辑器vim | vim插件安装

目录 1. Linux软件管理yum 1.1 什么是软件包 1.2 查看软件包 1.3 如何安装软件 1.4 如何卸载软件 2. Linux编辑器vim 2.1 vim的基本概念 2.2 vim的基本操作 2.3 vim正常模式命令集 2.4 vim末行模式命令集 2.5 简单vim配置 2.6 插件安装 1. Vim-Plug 3. coc.nvim …

力扣hot100题解(python版44-47题)

44、二叉搜索树中第K小的元素 给定一个二叉搜索树的根节点 root &#xff0c;和一个整数 k &#xff0c;请你设计一个算法查找其中第 k 个最小元素&#xff08;从 1 开始计数&#xff09;。 示例 1&#xff1a; 输入&#xff1a;root [3,1,4,null,2], k 1 输出&#xff1a;…

C++的内联函数

目录 前言 内联函数 为什么声明和定义分离 为什么声明和定义分离后不出错 为什么内联函数不支持声明和定义分离 为什么内联函数支持声明和定义不分离 坚持声明和定义不分离的解决方法 static修饰函数 inline修饰函数 结论 声明和定义不分离的应用场景 前言 在C语言…

Compiling from source on UNIX(cmake doxygen ant maven ccache)

前言 源码链接 cmake-3.18.0 https://cmake.org/files/v3.18/cmake-3.18.0.tar.gzdoxygen-1.10.0 https://www.doxygen.nl/files/doxygen-1.10.0.src.tar.gzapache-ant-1.10.8-bin https://archive.apache.org/dist/ant/binaries/apache-ant-1.10.8-bin.tar.gzapache-maven-3…

tomcat部署和优化(二)----- 轻松搭建博客、状态页优化、虚拟主机配置

一、tomcat 1、自建博客 [rootzzzcentos1 ~]#systemctl stop firewalld [rootzzzcentos1 ~]#setenforce 0 [rootzzzcentos1 ~]#cd /data/ [rootzzzcentos1 data]#rz -E rz waiting to receive. [rootzzzcentos1 data]#ls apache-tomcat-9.0.16 apache-tomcat-9.0…

数据挖掘:航空公司的客户价值分析

需求分析 理解并掌握聚类分析方法&#xff0c;掌握数据的标准化&#xff0c;掌握寻找最佳聚类数&#xff0c;掌握聚类的绘图&#xff0c;掌握聚类分析的应用场景。 系统实现 实验流程分析 借助航空公司数据&#xff0c;对客户进行分类对不同类别的客户进行特征分析&#xf…

对称加密与非对称加密

1、对称加密 对称加密&#xff0c;即采用对称的密码编码技术&#xff0c;他的特点是&#xff0c;加密和解密使用相同的秘钥。 常见的对称加密算法有DES、3DES、Blowfish、IDEA、RC4、RC5、RC6和AES。 优点&#xff1a;对称加密算法使用起来简单快捷&#xff0c;密钥较短&…

【Python】进阶学习:pandas--如何根据指定条件筛选数据

【Python】进阶学习&#xff1a;pandas–如何根据指定条件筛选数据 &#x1f308; 个人主页&#xff1a;高斯小哥 &#x1f525; 高质量专栏&#xff1a;Matplotlib之旅&#xff1a;零基础精通数据可视化、Python基础【高质量合集】、PyTorch零基础入门教程&#x1f448; 希望…

亿道信息轻工业三防EM-T195,零售、制造、仓储一网打尽

厚度仅10.5mm&#xff0c;重量仅0.65千克的EM-T195&#xff0c;其紧凑而纤薄的设计为以往加固型平板带来了全新的轻薄概念。尽管设计时尚、轻薄&#xff0c;但经过军用认证的强固性仍然能够承受所有具有挑战性的环境条件。随身携带无负担的轻便性加上抗震功能使其成为餐厅、酒店…

数据结构——Top-k问题

Top-k问题 方法一&#xff1a;堆排序&#xff08;升序&#xff09;&#xff08;时间复杂度O(N*logN)&#xff09;向上调整建堆&#xff08;时间复杂度&#xff1a;O(N * logN) &#xff09;向下调整建堆&#xff08;时间复杂度&#xff1a;O(N) &#xff09;堆排序代码 方法二&…