我在代码随想录|写代码Day31 | 贪心算法总结篇 | 贪心终结一题

在这里插入图片描述

🔥博客介绍`: 27dCnc

🎥系列专栏: <<数据结构与算法>> << 算法入门>> << C++项目>>

🎥 当前专栏: << 算法入门>>

专题 : 数据结构帮助小白快速入门算法
👍👍👍👍👍👍👍👍👍👍👍👍
☆*: .。. o(≧▽≦)o .。.:*☆

❤️感谢大家点赞👍收藏⭐评论✍️

在这里插入图片描述

学习目标:

今日学习打卡

在这里插入图片描述

  • 贪心算法总结篇

学习时间:

  • 周一至周五晚上 7 点—晚上9点
  • 周六上午 9 点-上午 11 点
  • 周日下午 3 点-下午 6 点

学习内容:

贪心终结一题| 监控二叉树

题目考点: 贪心

在这里插入图片描述
解题思路

这道题目首先要想,如何放置,才能让摄像头最小的呢?

从题目中示例,其实可以得到启发,我们发现题目示例中的摄像头都没有放在叶子节点上!

这是很重要的一个线索,摄像头可以覆盖上中下三层,如果把摄像头放在叶子节点上,就浪费的一层的覆盖。

所以把摄像头放在叶子节点的父节点位置,才能充分利用摄像头的覆盖面积。

那么有同学可能问了,为什么不从头结点开始看起呢,为啥要从叶子节点看呢?

因为头结点放不放摄像头也就省下一个摄像头, 叶子节点放不放摄像头省下了的摄像头数量是指数阶别的。

所以我们要从下往上看,局部最优:让叶子节点的父节点安摄像头,所用摄像头最少,整体最优:全部摄像头数量所用最少!

局部最优推出全局最优,找不出反例,那么就按照贪心来!

此时,大体思路就是从低到上,先给叶子节点父节点放个摄像头,然后隔两个节点放一个摄像头,直至到二叉树头结点。

此时这道题目还有两个难点:

  1. 二叉树的遍历
  2. 如何隔两个节点放一个摄像头

确定遍历顺序

在二叉树中如何从低向上推导呢?

可以使用后序遍历也就是左右中的顺序,这样就可以在回溯的过程中从下到上进行推导了。

后序遍历代码如下:

int traversal(TreeNode* cur) {

    // 空节点,该节点有覆盖
    if (终止条件) return ;

    int left = traversal(cur->left);    // 左
    int right = traversal(cur->right);  // 右

    逻辑处理                            // 中
    return ;
}

注意在以上代码中我们取了左孩子的返回值,右孩子的返回值,即left 和 right, 以后推导中间节点的状态

如何隔两个节点放一个摄像头?

此时需要状态转移的公式,大家不要和动态的状态转移公式混到一起,本题状态转移没有择优的过程,就是单纯的状态转移!

来看看这个状态应该如何转移,先来看看每个节点可能有几种状态:

有如下三种:

  • 该节点无覆盖
  • 本节点有摄像头
  • 本节点有覆盖

我们分别有三个数字来表示:

0:该节点无覆盖
1:本节点有摄像头
2:本节点有覆盖

大家应该找不出第四个节点的状态了。

一些同学可能会想有没有第四种状态:本节点无摄像头,其实无摄像头就是 无覆盖 或者 有覆盖的状态,所以一共还是三个状态。

因为在遍历树的过程中,就会遇到空节点,那么问题来了,空节点究竟是哪一种状态呢? 空节点表示无覆盖? 表示有摄像头?还是有覆盖呢?

回归本质,为了让摄像头数量最少,我们要尽量让叶子节点的父节点安装摄像头,这样才能摄像头的数量最少。

那么空节点不能是无覆盖的状态,这样叶子节点就要放摄像头了,空节点也不能是有摄像头的状态,这样叶子节点的父节点就没有必要放摄像头了,而是可以把摄像头放在叶子节点的爷爷节点上。

所以空节点的状态只能是有覆盖,这样就可以在叶子节点的父节点放摄像头了

接下来就是递推关系。

那么递归的终止条件应该是遇到了空节点,此时应该返回2(有覆盖),原因上面已经解释过了。

代码如下:

// 空节点,该节点有覆盖
if (cur == NULL) return 2;
  • 情况1:左右节点都有覆盖
    左孩子有覆盖,右孩子有覆盖,那么此时中间节点应该就是无覆盖的状态了。

如图:
在这里插入图片描述
情况2:左右节点至少有一个无覆盖的情况
如果是以下情况,则中间节点(父节点)应该放摄像头:

  • left == 0 && right == 0 左右节点无覆盖
  • left == 1 && right == 0 左节点有摄像头,右节点无覆盖
  • left == 0 && right == 1 左节点有无覆盖,右节点摄像头
  • left == 0 && right == 2 左节点无覆盖,右节点覆盖
  • left == 2 && right == 0 左节点覆盖,右节点无覆盖

这个不难理解,毕竟有一个孩子没有覆盖,父节点就应该放摄像头。

此时摄像头的数量要加一,并且return 1,代表中间节点放摄像头。

  • 情况3:左右节点至少有一个有摄像头
    如果是以下情况,其实就是 左右孩子节点有一个有摄像头了,那么其父节点就应该是2(覆盖的状态)

  • left == 1 && right == 2 左节点有摄像头,右节点有覆盖

  • left == 2 && right == 1 左节点有覆盖,右节点有摄像头

  • left == 1 && right == 1 左右节点都有摄像头

在这里插入图片描述

  • 情况4:头结点没有覆盖
    以上都处理完了,递归结束之后,可能头结点 还有一个无覆盖的情况,如图:

在这里插入图片描述
最终代码

// 版本一
class Solution {
private:
    int result;
    int traversal(TreeNode* cur) {

        // 空节点,该节点有覆盖
        if (cur == NULL) return 2;

        int left = traversal(cur->left);    // 左
        int right = traversal(cur->right);  // 右

        // 情况1
        // 左右节点都有覆盖
        if (left == 2 && right == 2) return 0;

        // 情况2
        // left == 0 && right == 0 左右节点无覆盖
        // left == 1 && right == 0 左节点有摄像头,右节点无覆盖
        // left == 0 && right == 1 左节点有无覆盖,右节点摄像头
        // left == 0 && right == 2 左节点无覆盖,右节点覆盖
        // left == 2 && right == 0 左节点覆盖,右节点无覆盖
        if (left == 0 || right == 0) {
            result++;
            return 1;
        }

        // 情况3
        // left == 1 && right == 2 左节点有摄像头,右节点有覆盖
        // left == 2 && right == 1 左节点有覆盖,右节点有摄像头
        // left == 1 && right == 1 左右节点都有摄像头
        // 其他情况前段代码均已覆盖
        if (left == 1 || right == 1) return 2;

        // 以上代码我没有使用else,主要是为了把各个分支条件展现出来,这样代码有助于读者理解
        // 这个 return -1 逻辑不会走到这里。
        return -1;
    }

public:
    int minCameraCover(TreeNode* root) {
        result = 0;
        // 情况4
        if (traversal(root) == 0) { // root 无覆盖
            result++;
        }
        return result;
    }
};

在这里插入图片描述

重磅消息:

GTP - 4 最新版接入服务他来了 点击链接即可查看详细

GTP - 4 搭建教程

🔥如果此文对你有帮助的话,欢迎💗关注、👍点赞、⭐收藏、✍️评论,支持一下博主~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/423521.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Spring Cloud Gateway-系统保护Sentinel集成

文章目录 Sentinel介绍Spring Cloud Gateway集成Sentinelpom依赖Sentinel配置Sentinel集成Nacos作为数据源自定义降级响应 Sentinel介绍 ​ 随着微服务的流行&#xff0c;服务和服务之间的稳定性变得越来越重要。Sentinel 是面向分布式、多语言异构化服务架构的流量治理组件&a…

FastAPI 的 quickstart

从这一章往后我们就正式开始学习 FastAPI 了 代码 FastAPI 环境安装 python 环境安装 根据要求至少需要 python 3.8及其以上&#xff0c;可以去 python 官网 自行下载安装, 本文中我们用 python 3.11 FastAPI 环境安装 pip install fastapi pip install "uvicorn[sta…

Julia语言中的位运算符、赋值运算符、算术运算符

算术运算符 # 使用基本的赋值运算符 a 10 println("a 的初始值是: $a") # 使用加法赋值运算符 a 5 println("a 加上 5 后的值是: $a") # 使用减法赋值运算符 - a - 3 println("a 减去 3 后的值是: $a") # 使用乘法赋值运算符…

CSRF跨站请求伪造(一)

★★免责声明★★ 文章中涉及的程序(方法)可能带有攻击性&#xff0c;仅供安全研究与学习之用&#xff0c;读者将信息做其他用途&#xff0c;由Ta承担全部法律及连带责任&#xff0c;文章作者不承担任何法律及连带责任。 1、CSRF简介 CSRF&#xff0c;全称&#xff1a;Cross-S…

HarmonyOS Stage模型 用程序运行切换 验证UIAbility 启动模式(下) 验证:specified启动模式 Ability间切换

上文 HarmonyOS Stage模型 用程序运行切换 验证UIAbility 启动模式(上) 验证:singleton、multiton、standard启动模式 我们已经验证完了 singleton multiton standard 三种启动模式 留下了毕竟复杂的 specified 这里 首先 我们要写两个不同的界面 index 编写代码如下 import…

2024最新算法:鳑鲏鱼优化算法(Bitterling Fish Optimization,BFO)求解23个基准函数(提供MATLAB代码)

一、鳑鲏鱼优化算法 鳑鲏鱼优化算法&#xff08;Bitterling Fish Optimization&#xff0c;BFO&#xff09;由Lida Zareian 等人于2024年提出。鳑鲏鱼在交配中&#xff0c;雄性和雌性物种相互接近&#xff0c;然后将精子和卵子释放到水中&#xff0c;但这种方法有一个很大的缺…

Linux系统源代码数据防泄密加密软件

数据防泄密系统 是一套从源头上保障数据安全和使用安全的软件系统。包含了文件透明加解密、内部文件流转功能、密级管控、离线管理、文件外发管理、灵活的审批流程、工作模式切换、服务器白名单等功能。从根本上严防信息外泄&#xff0c;保障信息安全。 www.weaem.com 功能介绍…

手写模拟器,解放双手!效果炸裂的生产工具

手写模拟器是一款基于Handright的仿手写图片生成软件&#xff0c;可以让你的电脑和手机也能写出漂亮的手写字&#xff0c;你只需要输入你想要写的内容&#xff0c;选择你喜欢的字体和背景&#xff0c;就可以生成一张高仿真的手写图片&#xff0c;用于各种场合&#xff0c;比如做…

CloudCompare使用-点云手动分割操作

点云手动分割操作 一、概述二、分割步骤1. 点击分割按钮2. 分割标题栏 一、概述 我们有时候需要对点云进行局部分割&#xff0c;就想对下面这个四棱锥和立方体的组合体给分离出来。 分离的效果如下&#xff1a; 二、分割步骤 1. 点击分割按钮 有两个入口 1. 菜单栏 2. 快…

如何根据玩家数量和游戏需求选择最合适的服务器配置?

根据玩家数量和游戏需求选择最合适的服务器配置&#xff0c;首先需要考虑游戏的类型、玩家数量、预计的在线时间以及对内存和CPU性能的需求综合考虑。对于大型多人在线游戏&#xff0c;如MMORPG或MOBA等&#xff0c;由于需要更多的CPU核心数来支持更复杂的游戏逻辑和处理大量数…

k8s-001-Centos7内核升级

1. 查看内核 [rootlocalhost ~]# uname -a 2. 执行的命令(安装最新版内核): 下载: rpm --import https://www.elrepo.org/RPM-GPG-KEY-elrepo.org 安装: rpm -Uvh http://www.elrepo.org/elrepo-release-7.0-2.el7.elrepo.noarch.rpm &#xff08; 查看最新版内核&…

深度学习的onnx模型插入新节点构建新模型

import numpy as np import onnx import onnxruntime import onnxruntime.backend as backendmodel onnx.load(test.onnx) node model.graph.node graph model.graph# 1.2搜索目标节点 # for i in range(len(node)): # if node[i].op_type Conv: # node_rise …

Java中的图数据库应用:Neo4j入门

第1章&#xff1a;引言 在数据驱动的时代&#xff0c;咱们处理的不仅仅是数字和文本&#xff0c;还有复杂的关系和网络。想象一下社交网络中人与人之间错综复杂的联系&#xff0c;或者是互联网上网页之间的链接关系&#xff0c;传统的表格数据库已经难以高效地处理这些关系密集…

Linux-基础命令(黑马学习笔记)

Linux的目录结构 Linux的目录结构 Linux的目录结构是一个树形结构 Windows系统可以拥有多个盘符&#xff0c;如C盘、D盘、E盘 Linux没有盘符这个概念&#xff0c;只有一个根目录 /&#xff0c;所有文件都在它下面 Linux路径的描述方式 ● 在Linux系统中&#xff0c;路径之…

抖音视频批量下载软件|视频评论采集工具

抖音视频评论采集软件是一款基于C#开发的高效、便捷的工具&#xff0c;旨在为用户提供全面的数据采集和分析服务。用户可以通过关键词搜索抓取视频数据&#xff0c;也可以通过分享链接进行单个视频的抓取和下载&#xff0c;从而轻松获取抖音视频评论数据。 批量视频提取模块&a…

Java中使用poi+poi-tl实现根据模板导出word文档

场景 若依管理系统前后端分离版基于ElementUI和SpringBoot怎样实现Excel导入和导出: 若依管理系统前后端分离版基于ElementUI和SpringBoot怎样实现Excel导入和导出_若依导出前端获得到后端的execl流之后怎么操作-CSDN博客 上面讲的是Excel的导出&#xff0c;如果是需要根据w…

基于SpringBoot多模块项目引入其他模块时@Autowired无法注入

基于SpringBoot多模块项目引入其他模块时Autowired无法注入 一、问题描述1、解决方案 一、问题描述 启动Spring Boot项目时报 Could not autowire. No beans of ‘xxxxxxxx’ type found. 没有找到bean的实例&#xff0c;即spring没有实例化对象&#xff0c;也就无法根据配置文…

python-基础篇-运算-常见案例

文章目录 出租车车费计价牛顿第二定律虚过多少秒将港珠澳大桥的全长转换成中国古代的丈、尺表示出来 出租车车费计价 import math distance int(input("请输入运行里程数&#xff1a;")) print("本次运行公里数为&#xff1a;\033[31;0m", distance, &qu…

13. Springboot集成Protobuf

目录 1、前言 2、Protobuf简介 2.1、核心思想 2.2、Protobuf是如何工作的&#xff1f; 2.3、如何使用 Protoc 生成代码&#xff1f; 3、Springboot集成 3.1、引入依赖 3.2、定义Proto文件 3.3、Protobuf生成Java代码 3.4、配置Protobuf的序列化和反序列化 3.5、定义…

聊聊 HTTP 性能优化

作为用户的我们在 "上网冲浪" 的时候总是希望快一点&#xff0c;尤其是抢演唱会门票的时候&#xff0c;但是现实并非如此&#xff0c;有时候我们会遇到页面加载缓慢、响应延迟的情况。 而 HTTP 协议作为互联网世界的基础&#xff0c;从网站打开速度到移动应用的响应…