51单片机-(定时/计数器)

51单片机-(定时/计数器)

了解CPU时序、特殊功能寄存器和定时/计数器工作原理,以定时器0实现每次间隔一秒亮灯一秒的实验为例理解定时/计数器的编程实现。

1.CPU时序

1.1.四个周期

  • 振荡周期:为单片机提供定时信号的振荡源的周期(晶振周期或外加振荡周期)
  • 状态周期:2个振荡周期为1个状态周期,用S表示。振荡周期又称S周期或时钟周期。
  • 机器周期:1个机器周期含6个状态周期,12个振荡周期。
  • 指令周期:完成1条指令所占用的全部时间,它以机器周期为单位。

例如:外接晶振为12MHz时,51单片机相关周期的具体值为:
振荡周期=1/12us;
状态周期=1/6us;
机器周期=1us;
指令周期=1~4us;

1.2.相关概念

  • 51单片机有两组定时器/计数器,因为既可以定时,又可以计数,故称之为定时器/计数器。
  • 定时器/计数器和单片机的CPU是相互独立的。定时器/计数器工作的过程是自动完成的,不需要CPU的参与。
  • 51单片机中的定时器/计数器是根据机器内部的时钟或者是外部的脉冲信号对寄存器中的数据加1。
  • 有了定时器/计数器之后,可以增加单片机的效率,一些简单的重复加1的工作可以交给定时器/计数器处理。CPU转而处理一些复杂的事情。同时可以实现精确定时作用。

1.3.定时/计数器的工作原理

定时/计数器实质上是一个加1计数器。它随着计数器的输入脉冲进行自加1,也就是每来一个脉冲,计数器就自动加1,,当加到计数器为全1时,再输入一个脉冲就使计数器回零,且计数器的溢出使相应的中断标志位置1,向CPU发出中断请求(定时/计数器中断允许时)。如果定时/计数器工作于定时模式,则表示定时时间已到;如果工作于计数模式,则表示计数值已满。
可见,由溢出时计数器的值减去计数初值才是加1计数器的计数值。

2.定时器

2.1.定时器结构

定时/计数器的实质是加1计数器(16位),由高8位和低8位两个寄存器THx和TLx组成。TMOD是定时/计数器的工作方式寄存器,确定工作方式和功能;
TCON是控制寄存器,控制T0、T1的启动和停止及设置溢出标志。
在这里插入图片描述

2.2.特殊功能寄存器

2.2.1.控制寄存器TCON

TCON的低4位用于控制外部中断,已在前面中断系统中介绍。TCON的高4位用于控
制定时/计数器的启动和中断申请。其格式如下:

76543210
字节地址:88HTF1TR1TF0TR0IE1IT1IE0IT0
  • TF1(TCON.7):T1溢出中断请求标志位。T1计数溢出时由硬件自动置TF1为1。CPU响应中断后TF1由硬件自动清0。T1工作时,CPU可随时查询TF1的状态。所以,TF1可用作查询测试的标志。TF1也可以用软件置1或清0,同硬件置1或清0的效果一样。
  • TR1(TCON.6):T1运行控制位。TR1置1时,T1开始工作;TR1置0时,T1停止工作。TR1由软件置1或清0。所以,用软件可控制定时/计数器的启动与停止。
  • TF0(TCON.5):T0溢出中断请求标志位,其功能与TF1类同。
  • TR0(TCON.4):T0运行控制位,其功能与TR1类同。
2.2.2.工作方式寄存器TMOD

工作方式寄存器TMOD用于设置定时/计数器的工作方式,低四位用于T0,高四位用于T1。其格式如下:

76543210
字节地址:89HGATEC/TM1M0GATEC/TM1M0
  • GATE是门控位:
    GATE=0时,用于控制定时器的启动是否受外部中断源信号的影响。只要用软件使TCON中的TR0或TR1为1,就可以启动定时/计数器工作;
    GATA=1时,要用软件使TR0或TR1为1,同时外部中断引脚INT0/1也为高电平时,才能启动定时/计数器工作。即此时定时器的启动条件,加上了INT0/1引脚为高电平这一条件。

  • C/T :定时/计数模式选择位。
    C/T =0为定时模式;T上面有一杠代表=0时为定时
    C/T =1为计数模式。C上面没有一杠代表=1时为计数

  • M1M0:工作方式设置位。定时/计数器有四种工作方式。

M1M0工作方式说明
00方式 013位定时/计数器
01方式 116位定时/计数器
10方式 28位自动重装定时/计数器
11方式 3T0分成两个独立的 8 位定时/计数器;T1 此方式停止计数
  • 方式0
    方式0为13位计数,由TL0的低5位(高3位未用)和TH0的8位组成。TL0的低5位溢出时向TH0进位,TH0溢出时,置位TCON中的TF0标志,向CPU发出中断请求。
    在这里插入图片描述
    定时器模式时有:N=t/ Tcy
    计数初值计算的公式为:X=213-N。
    定时器的初值还可以采用计数个数直接取补法获得。
    计数模式时,计数脉冲是T0引脚上的外部脉冲。

门控位GATE具有特殊的作用。当GATE=0时,经反相后使或门输出为1,此时仅由TR0控制与门的开启,与门输出1时,控制开关接通,计数开始;当GATE=1时,由外中断引脚信号控制或门的输出,此时控制与门的开启由外中断引脚信号和TR0共同控制。当TR0=1时,外中断引脚信号引脚的高电平启动计数,外中断引脚信号引脚的低电平停止计数。这种方式常用来测量外中断引脚上正脉冲的宽度。

  • 方式1
    方式1的计数位数是16位,由TL0作为低8位,TH0作为高8位,组成了16位加1计数器 。
    在这里插入图片描述
    计数个数与计数初值的关系为:X=216-N
  • 方式2
    方式2为自动重装初值的8位计数方式。
    在这里插入图片描述
    计数个数与计数初值的关系为:X=28-N
    工作方式2特别适合于用作较精确的脉冲信号发生器。
  • 方式3
    方式3只适用于定时/计数器T0,定时器T1处于方式3时相当于TR1=0,停止计数。
    在这里插入图片描述
    工作方式3将T0分成为两个独立的8位计数器TL0和TH0 。

2.3.使用定时器步骤

  • 1.对TMOD赋值,以确定T0和T1的工作方式。
  • 2.计算初值,并将其写入TH0、TL0或TH1、TL1。
  • 3.中断方式时,则对EA赋值,开放定时器中断。
  • 4.使TR0或TR1置位,启动定时/计数器定时或计数。

2.4.计数器初值的计算

  • 机器周期也就是CPU完成一个基本操作所需要的时间。
  • 机器周期=1/单片机的时钟频率。
  • 51单片机内部时钟频率是外部时钟的12分频。也就是说当外部晶振的频率输入到单片机里面的时候要进行12分频。比如说你用的是12MHZ的晶振,那么单片机内部的时钟频率就是12/12MHZ,当你使用12MHZ的外部晶振的时候。机器周期=1/1M=1us。
  • 我们定时1ms的初值是多少呢,1ms/1us=1000。也就是要计数1000个数,初值=65535-1000+1(因为实际上计数器计数到65536才溢出)=64536=FC18H

3.定时器中断编程样例

3.1.声明和定义

3.2.定时器0来设置1毫秒定时

1.使用定时器0也就是要设置TMOD低八位,GATE=0,C/T=0,工作方式1所以M1M0=01
在这里插入图片描述
2.计算初值
方式1对应计算公式 :X=216-N;
也可以通过51初值设定软件快速生成;下载软件,被当成病毒时自行在安全中心允许并找回。
在这里插入图片描述
TH0=0XFC; //给定时器赋初值,定时1ms
TL0=0X18;
加上定时器0中断允许、总中断和开启定时器的函数代码:

void Timer0Init()
{
	TMOD|=0X01;//选择为定时器0模式,工作方式1,仅用TR0打开启动。
	TH0=0XFC;	//给定时器赋初值,定时1ms
	TL0=0X18;	
	ET0=1;//打开定时器0中断允许
	EA=1;//打开总中断
	TR0=1;//打开定时器			
}

想要每隔一秒就亮一秒LED,在定时1ms后还需要继续赋初值再定时,累加1000后刚好1秒。中断函数中断号为1。

void Timer0() interrupt 1
{
	static u16 i;
	TH0=0XFC;	//重新装载初值,定时1ms
	TL0=0X18;
	i++;
	if(i==1000)//累加1000次得到一秒
	{
		i=0;
		led=~led;	
	}	
}

完整代码如下:

#include "reg52.h"			 //此文件中定义了单片机的一些特殊功能寄存器
typedef unsigned int u16;	  //对数据类型进行声明定义
typedef unsigned char u8;

sbit led=P2^0;	 //定义P20口是led
/*
定时器0初始化函数
*/
void Timer0Init()
{
	TMOD|=0X01;//选择为定时器0模式,工作方式1,仅用TR0打开启动。
	TH0=0XFC;	//给定时器赋初值,定时1ms
	TL0=0X18;	
	ET0=1;//打开定时器0中断允许
	EA=1;//打开总中断
	TR0=1;//打开定时器			
}

void main()
{	
	Timer0Init();  //定时器0初始化
	while(1);		
}

void Timer0() interrupt 1
{
	static u16 i;
	TH0=0XFC;	//重新装载初值,定时1ms
	TL0=0X18;
	i++;
	if(i==1000)//累加1000次得到一秒
	{
		i=0;
		led=~led;	
	}	
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/422703.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【论文笔记】Mamba:挑战Transformer地位的新架构

Mamba Mamba: Linear-Time Sequence Modeling with Selective State Spaces 代码地址 摘要 背景 基础模型,它现在驱动着深度学习中大多数令人振奋的应用,几乎都是基于Transformer架构及其核心注意力模块。 存在的问题 许多subquadratic-time架构如…

langchain学习笔记(十)

Bind runtime args | 🦜️🔗 Langchain 1、有时,我们希望使用常量参数调用Runnable序列中的Runnable,这些参数不是序列中前一个Runnable的输出的一部分,也不是用户的输入,这时可以用Runnable.bind() from …

【学习心得】浏览器开发者工具中出现的VM开头的JS文件是什么?

一、现象描述 在Chrome的开发者工具中,你可能会看到一些以“VM”开头的JavaScript文件(如“VM111.js”)。 二、VM文件到底是什么? “VM”表示的是Virtual Machine(虚拟机),这些文件通常表示由浏…

C++:菱形继承问题

目录 1、什么是菱形继承 2、虚拟继承 3、一些常见问题 1. 什么是菱形继承?菱形继承的问题是什么? 2. 什么是菱形虚拟继承?如何解决数据冗余和二义性的 3. 继承和组合的区别?什么时候用继承?什么时候用组合&#…

wpsexcel蛋疼的数字列转文本

在excel处理时,有时某一列会以数字形式展示,后续处理非常麻烦,希望转为字符,参考以下方法 选定整列点击"数据"->“分列”->一直下一步直到选择文本

Java求职技能清单(2024版)

一、Java基础扎实(反射、集合、IO、NIO、多线程、设计模式、通信协议等基础技术) (一)Java (二)网络IO (三)NIO模型 (…

在golang中使用protoc

【Golang】proto生成go的相关文件 推荐个人主页:席万里的个人空间 文章目录 【Golang】proto生成go的相关文件1、查看proto的版本号2、安装protoc-gen-go和protoc-gen-go-grpc3、生成protobuff以及grpc的文件 1、查看proto的版本号 protoc --version2、安装protoc-…

备战蓝桥杯---线段树基础2

今天我们把线段树的另一个模板看一下: 在这里,我们注意到乘的操作,因此我们用两个懒标记来分别表示加和乘,这时我们面临了一个问题,就是当我们把标记往下传时,它的儿子怎么知道是先乘还是先加? …

Doris实战——拈花云科的数据中台实践

前言 拈花云科 NearFar X Lab 团队调研并引进 Doris 作为新架构下的数据仓库选型方案。本文主要介绍了拈花云科数据中台架构从 1.0 到 2.0 的演变过程,以及 Doris 在交付型项目和 SaaS 产品中的应用实践。 一、业务背景 拈花云科的服务对象主要是国内各个景区、景点…

React-router的创建和第一个组件

需要先学react框架 首先:找到一个文件夹,在文件夹出打开cmd窗口,输入如下图的口令 npx create-react-app demo 然后等待安装 安装完成 接下来进入创建的demo实例 cd demo 然后可以用如下方式打开vscode code . 注意:不要忽略点号与…

【重温设计模式】享元模式及其Java示例

享元模式的介绍 在编程世界中,我们常常面临着如何有效管理系统资源的挑战。这就好比我们在生活中,面对有限的物质资源,如何做到既满足需求又节约使用,是一门艺术。在设计模式中,有一种模式,恰如其分地解决…

VR转接器:破解虚拟与现实边界的革命性设备

VR转接器,这一革命性的设备,为虚拟现实体验带来了前所未有的自由度。它巧妙地连接了虚拟与现实,使得用户在享受VR眼镜带来的奇幻世界的同时,也能自由地在现实世界中活动。这一设计的诞生,不仅解决了VR眼镜续航的瓶颈问…

MySQL进阶之(三)InnoDB数据存储结构之数据页结构

三、InnoDB数据存储结构之数据页结构 3.1 数据库的存储结构3.1.1 MySQL 数据存储目录3.1.2 页的引入3.1.3 页的概述3.1.4 页的上层结构 3.2 数据页结构3.2.1 文件头和文件尾01、File Header(文件头部)02、File Trailer(文件尾部) …

比小鹏、问界都贵,谁给了理想MEGA勇气?

“规模小的时候,一号位善于解题。规模大的时候,一号位要善于出题。” 前不久,理想汽车CEO李想在微博上如此评价一家公司中,老板应该怎么做。 现在,成立近9年的理想汽车做出了一个“违背祖宗”的决定——大举进军纯电…

陶瓷工业5G智能制造工厂数字孪生可视化平台,推进行业数字化转型

陶瓷工业5G智能制造工厂数字孪生可视化平台,推进行业数字化转型。在陶瓷工业领域,5G智能制造工厂数字孪生可视化平台的应用正在改变着行业的传统生产模式,推动着数字化转型的进程。本文将围绕这一主题展开探讨,分析数字孪生可视化…

挑战30天学完Python:Day25 pandas

🎉 本系列为Python基础学习,原稿来源于 30-Days-Of-Python 英文项目,大奇主要是对其本地化翻译、逐条验证和补充,想通过30天完成正儿八经的系统化实践。此系列适合零基础同学,或仅了解Python一点知识,但又没…

智能家居控制系统(51单片机)

smart_home_control_system 51单片机课设,智能家居控制系统 使用及转载请标明出处(最好点个赞及star哈哈) Github地址,带有PPT及流程图 Gitee码云地址,带有PPT及流程图 ​ 以STC89C52为主控芯片,以矩阵键…

KubeSphere平台安装系列之二【Linux单节点部署KubeSphere】(2/3)

**《KubeSphere平台安装系列》** 【Kubernetes上安装KubeSphere(亲测–实操完整版)】(1/3) 【Linux单节点部署KubeSphere】(2/3) 【Linux多节点部署KubeSphere】(3/3) **《KubeS…

云时代【6】—— 镜像 与 容器

云时代【6】—— 镜像 与 容器 四、Docker(三)镜像 与 容器1. 镜像(1)定义(2)相关指令(3)实战演习镜像容器基本操作离线迁移镜像镜像的压缩与共享 2. 容器(1)…

【MATLAB】语音信号识别与处理:SG滤波算法去噪及谱相减算法呈现频谱

1 基本定义 SG 滤波算法(Savitzky - Golay 滤波算法)是一种数字信号处理算法,用于对信号进行平滑处理。该算法利用最小二乘法拟合局部数据段,然后用拟合的函数来估计每个数据点的值,从而实现平滑处理。 SG 滤波算法的…