STM32------分析GPIO寄存器

 一、初始LED原理图

共阴极led

LED发光二极管,需要有电流通过才能点亮,当有电压差就会产生电流

二极管两端的电压差超过2.7v就会有电流通过

电阻的作用

由于公式I=V/R

不加电阻容易造成瞬间电流无穷大

发光二极管工作电流为10-20MA

3.3v / 1kΩ  = 3.3mA

电阻作用限流电阻。

二、分析GPIO寄存器

2.1 前言

编程的目的是为了操作硬件,硬件分布在地址上,所以转变为编程操作地址,因为地址是唯一的。

编程的目的就操作地址间接操作硬件

地址分布比较广,硬件都会把地址用寄存器的方式来分布

某个地址到某个地址属于某个寄存器

这样的话我们操作硬件实际上就是在操作地址,操作地址实际上就是转化为操作寄存器。

2.2 本节目标

 

操控PA1-PA4输出高电平

        经过前言分析可知,这几个问题编程找到一个或者某几个寄存器,这几个寄存器可以让我们的PA1-PA4进行高电平的输出。

         另一个要注意的我们的gpio口,当前pa1-pa4要输出高低电平,那么当前这个pa1-pa4他所对应的功能是通用的输入输出。 这时候pa1-pa4是输出功能,还有其他功能,当前处理器有48个管脚,每一个管脚有多个功能,某一时刻只用一个功能,这就是管脚的复用。找寄存器,那几个可以管理我们的pa1-pa4,让这个四个管脚可以当做输入输出功能中的输出功能来用。 

为了更好的实现分析,这时候需要去看stm32的中文参考手册

其中第八节是对gpio的描述

GPIO描述:每个gpio端口有两个32位配置寄存器,两个数据寄存器,一个32位置位/复位寄存器,一个16位复位寄存器,一个32位锁定寄存器,总共有七个寄存器,我们就是通过操作这些寄存器来控制我们的GPIO的。

注:1字节=8位(bit)

其中GPIO每个端口又可以配置成如下八种模式:

对于具体gpio配置成什么模式,8.1.11节外设的GPIO配置有详细解释

2.3 寄存器描述

 首先看8.2.1端口配置低寄存器(GPIOx_CRL)x=A..E

4位一组 

 分别配置输入输出模式和速度。

从表中可以看到低寄存器对应的是GPIO0-7

正好对应32的八组。

端口配置高寄存器是8-15

 因为我们要配置的是PA1-4,所以我们只关系低寄存器的1-4也就是4-19位

对于输出模式,大多数gpio采用推挽输出模式即可 

 2.4 寄存器地址确定

当我们确定好要操作的寄存器后,下一步就需要找到寄存器对应的地址,然后在相应的位写入数据即可

寄存器地址由基地址+偏移地址组成

gpio的基地址在

的寄存器映像中可以找到

整个地址被分为0x0000 0000  到 0Xffff  FFFF,

当前stm32是32位的处理器。就是2的32次方。

最多能管理从0开始一直到2的32次方减1.

由寄存器映像可知,gpioA的基地址是0x4001 0800

所以我们要操作的低寄存器地址就是基地址+偏移地址=0x4001 0800 + 0x00

一会就要向这个地址里面的4到19位写0011 0011 0011 0011 

根据寄存器配置说明可知00是通用推挽输出,11是最大速度50MHz,这样gpioA1-4就都配置成了最大速度50Mhz ,推挽输出模式

2.5 输出寄存器配置

当知道gpio1-4的地址并配置好输出模式后,我们应该考虑输出数据了,应该会有一个寄存器会完成这部分操作。 

找到了端口输出数据寄存器

首先确定其地址,地址=基地址+偏移地址=0x4001 0800 + 0xCH = 0x4001 08CH

这16位就占了我们寄存器中的低16位。

端口输出寄存器干什么用的呢,你往哪一个端口写1,哪一个就输出高电平 ,哪一个端口写0就输出低电平。

gpio我们只用到了pa1-pa4,所以这个寄存器我们只需要关心

三、寄存器配置代码

控制低寄存器地址 

 

我们现在是要往地址里面去写 值,那么我们现在要修改的不是地址指向的位置而是要修改我们地址里面的值,地址里面的内容,也就是说我们要取出这地址里面的内容把里面的内容做一个修改,要如何修改如何取出地址里面的值,我们就需要再加一个强制类型转换。 

这个代表了地址了: 

 取出地址里面的内容:

用到了两个*,第一个*是强制类型转换,将我们的0x40010800转成了一个用来表示地址的指针,如何取出地址里面的值呢,取值操作符。

取出地址里面的值了下一步要干什么,我是不是要修改这个地址里面的值。

如何修改呢,我们要修改的是这个地址里面的4-19位就可以了。

如何修改4-19位最好的 做法是先给他清零,然后再写入我们的新值,

 这一部分属于C语言的内容

分别用到了

&按位与如果两个相应的二进制位都为1,则该位的结果值为1,否则为0
I按位或两个相应的二进制位中只要有一个为1,该位的结果值为1
^按位异或若参加运算的两个二进制位值相同则为0,否则为1
~取反~是一元运算符,用来对一个二进制数按位取反,即将0变1,将1变0
<<左移用来将一个数的各二进制位全部左移N位,右补0
>>右移将一个数的各二进制位右移N位,移到右端的低位被舍弃,对于无符号数,高位补0

1.与运算(&)
参加运算的两个数据,按二进制位进行“与”运算。

运算规则:0&0=0; 0&1=0; 1&0=0; 1&1=1;

即:两位同时为“1”,结果才为“1”,否则为0

例如:3&5 即 0000 0011 & 0000 0101 = 0000 0001 因此,3&5的值得1。

两个数与的结果一定是比任意两个数都小,换句话说,越与数越小

2.或运算(|)
参加运算的两个对象,按二进制位进行“或”运算。

运算规则:0|0=0; 0|1=1; 1|0=1; 1|1=1;

即 :参加运算的两个对象只要有一个为1,其值为1。

例如:3|5 即 0000 0011 | 0000 0101 = 0000 0111 因此,3|5的值得7。

两个数或的结果一定是大于其中的任意一个数,换句话说,越或数越大

3.异或运算(^)
参加运算的两个数据,按二进制位进行“异或”运算。

运算规则:0^0=0; 0^1=1; 1^0=1; 1^1=0;

即:参加运算的两个对象,如果两个相应位为“异”(值不同),则该位结果为1,否则为0。

例如:9^5可写成算式如下: 00001001^00000101=00001100 可见9^5=12

4.取反运算(~)
参加运算的数据,按二进制位进行“取反”运算。

运算规则:~0=1; ~1=0;

即:参与运算的数据,对应的二进制取反后 0 变成 1 ,1 变成 0 。

例如: 3 :00000011 ; ~3 :11111100 = 252

5.左移运算(<<)
参与运算的数据,二进制全部向左移动 n 位,左边舍去,右边补 0

运算规则:00000101 << 1 = 00001010

即:参与运算的数据,对应的二进制位向左移动 n 位,左边舍去,右边补 0 。

例如:2 << 1 = 4 ; 00000010 << 1 = 00000100

左移一位相当于乘以 2

6.右移运算(>>)
参与运算的数据,二进制全部向右移动 n 位,右边舍去,左边补 0

运算规则:00000101 >> 1 = 00000010

即:参与运算的数据,对应的二进制位向右移动 n 位,右边舍去,左边补 0 。

例如 :2 >> 1 = 1 ; 00000010 >> 1 = 00000001

右移一位相当于除以 2
上述位预算符---------原文链接:https://blog.csdn.net/qq_52354698/article/details/119301131

 与操作会清零,如何修改4-19位,4-19位清零,其他位不变,

0xff0000f = 111111111111000000000000000011111111

当进行位与操作时,因为4-19位都是0,按照其运算规则,得到值始终是0

清楚之后,这时候需要去修改我们的4-19位分别写成0011 0011 0011 0011,

这时候可以采用或操作。

0011等于十六进制的3

或操作置位, =0x00033330;

四、通过寄存器地址进行点灯操作 

注: 

清零是与操作

置1是或操作

管脚高电平点亮

低电平熄灭

 点亮led灯和我们的端口输出数据寄存器有关:

寄存器地址等于基地址+偏移地址

现在我们要让他输出一个高电平

就要往这个寄存器里面的1-4位写高电平

要让灯熄灭的话对应写0就可以了

在进入循环语句之前应该让我们的led灯都熄灭,在循环中点亮熄灭

 DOR寄存器地址:

 =0x4001080c

首先对寄存器清零,清零就是与操作

1<<1 = 10

1<<2 = 100

1<<3 = 1000

1<<4 = 10000

|或完是11110

取反后是00001

通过循环做一个延时

 

五、GPIO库函数 

 

在stm32固件库函数手册的第10节对GPIO的库函数进行了描述

GPIO寄存器结构,GPIO_TypeDef和AFIO_TypeDef在文件stm32f10x_map.h中

其中AFIO有两个功能:

1、引脚复用重映射

2、中断引脚选择

GPIO函数库

其中标黄的是常用的几个库函数

函数GPIO_DeInit和函数GPIO_DeInit

配置GPIO端口为默认值。

函数GPIO_Init对GPIO进行初始化,主要包括配置GPIOx的那个引脚,配置成什么模式,速度是多少,这些都是通过一个结构体进行配置的。

GPIO_ReadInputDataBit:读取PA15的输入值(GPIOA_PIN_15)

函数GPIO_ReadInputData:读取GPIOA的输入值,多位

函数GPIO_ReadOutputDataBit:读取PA15的输出值

函数GPIO_ReadOutputData:读取GPIOA的输出值,多位

 一个字节=8位(bit)所以末尾bit就是读一位的值

函数 GPIO_SetBits:设置PA15的值,就是置1

函数 GPIO_ResetBits:清除PA15的输入值,就是置0

函数 GPIO_WriteBit:设置PA15的值,可以是0也可以是1

函数GPIO_Write:设置PA的值,可以是一个十六进制的值,一下设置多位

函数GPIO_EXTILineConfig:中断时使用,选择一个GPIO引脚作为中断线路。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/421363.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

深度学习-回顾经典AlexNet网络:山高我为峰

深度学习-回顾经典AlexNet网络之山高我为峰 深度学习中&#xff0c;经典网络引领一波又一波的技术革命&#xff0c;从LetNet到当前最火的GPT所用的Transformer&#xff0c;它们把AI技术不断推向高潮。2012年AlexNet大放异彩&#xff0c;它把深度学习技术引领第一个高峰&#x…

iOS消息发送流程

Objc的方法调用基于消息发送机制。即Objc中的方法调用&#xff0c;在底层实际都是通过调用objc_msgSend方法向对象消息发送消息来实现的。在iOS中&#xff0c; 实例对象的方法主要存储在类的方法列表中&#xff0c;类方法则是主要存储在原类中。 向对象发送消息&#xff0c;核心…

Flink:动态表 / 时态表 / 版本表 / 普通表 概念区别澄清

博主历时三年精心创作的《大数据平台架构与原型实现&#xff1a;数据中台建设实战》一书现已由知名IT图书品牌电子工业出版社博文视点出版发行&#xff0c;点击《重磅推荐&#xff1a;建大数据平台太难了&#xff01;给我发个工程原型吧&#xff01;》了解图书详情&#xff0c;…

git安装4.3

一、git的安装 1、下载git包 下载git包url&#xff1a;https://git-scm.com/download/win 下载包分为&#xff1a;64位和32位 2、点击安装包 2、选择安装路径 3、 点击下一步 4、点击next 5、点击next 6、点击next 7、 8、 9、 10、 11、 12、在桌面空白处&#xff0c;右键…

使用正则表达式的SqlServer Check约束实例

有表如下&#xff1b;会员表&#xff0c;第一个字段是会员编号&#xff0c;varchar(24)类型&#xff1b;第二个字段是单位名称&#xff1b; 现在插入一条记录&#xff0c;会员编号为abcd&#xff1b;插入了&#xff1b; 下面要添加一个约束&#xff0c;会员编号字段只能为数字的…

后台组件体系

从今天开始进入更细粒度说明。后台微服务是由组件构成的。平台的开发理念是为甲方打造一个生态环境。安装实施时为客户安装私仓来管理组件。开发微服务时鼓励拆分为组件。开发新功能时&#xff0c;先看有没有相关组件&#xff0c;有的话就在pom.xml文件&#xff08;不要问我这个…

曾桂华:车载座舱音频体验探究与思考| 演讲嘉宾公布

智能车载音频 I 分论坛将于3月27日同期举办&#xff01; 我们正站在一个前所未有的科技革新的交汇点上&#xff0c;重塑我们出行体验的变革正在悄然发生。当人工智能的磅礴力量与车载音频相交融&#xff0c;智慧、便捷与未来的探索之旅正式扬帆起航。 在驾驶的旅途中&#xff0…

相机格式化了还能恢复照片吗?内存卡数据恢复方法

相机已成为我们记录生活、工作和学习的重要工具。然而当相机意外格式化后&#xff0c;许多珍贵的照片可能会瞬间消失&#xff0c;这无疑给我们的生活和工作带来不小的困扰。那么相机格式化后&#xff0c;我们是否还有机会找回那些丢失的照片呢&#xff1f; 首先我们需要了解相机…

南京观海微电子---如何区分LED显示屏与LED背光源?

LED屏绝对不是常见的LED背光源&#xff0c;LED显示屏也被称为电子显示屏或浮动字。由LED点阵和LEDPC面板&#xff0c;通过红&#xff0c;蓝&#xff0c;白&#xff0c;绿LED的亮灭来显示文字&#xff0c;图像&#xff0c;动画&#xff0c;视频&#xff0c;内容。可根据不同的场…

ABAP - OOALV 用户交互事件

当用户要根据ALV进行某些功能操作比如打印表单时&#xff0c;OOALV标准按钮无法满足用户需求的时候&#xff0c;就要用到自定义按钮来实现了。思路&#xff1a;在OOALV增加一个自定义按钮&#xff0c;类CL_GUI_ALV_GRID提供了内置事件toolbar来完成&#xff0c;通过自定义按钮的…

回归啦!!!

消失的日子在实习&#xff0c;今天最后一天了来看看自己的学习日志&#xff0c;有没有可以和小伙伴交流的部分吧&#xff01; 目录 一、产品one ①简介 ②底层原理 ③知识点一 作用一&#xff1a;日志采集 作用二&#xff1a;实时监测 作用三&#xff1a;规则匹配 作用…

lotus 从矿工可用余额扣除扇区质押

修改 miner配置文件 # Whether to use available miner balance for sector collateral instead of sending it with each message## type: bool# env var: LOTUS_SEALING_COLLATERALFROMMINERBALANCE#CollateralFromMinerBalance falseCollateralFromMinerBalance true质押金…

SemiDrive E3 MCAL 开发系列(3)– Wdg 模块的使用

一、 概述 本文将会介绍 SemiDrive E3 MCAL Wdg 模块的基本配置&#xff0c;并且会结合实际操作的介绍&#xff0c;帮助新手快速了解并掌握这个模块的使用&#xff0c;文中的 MCAL 是基于 PTG3.0 的版本&#xff0c;开发板是官方的 E3640 网关板。 二、 Wdg 模块的主要配置 …

加密与安全_探索对称加密算法

文章目录 概述常用的对称加密算法AESECB模式CBC模式 (推荐)ECB VS CBC 附&#xff1a;AES工具类总结 概述 对称加密算法是一种加密技术&#xff0c;使用相同的密钥来进行加密和解密数据。在这种算法中&#xff0c;发送方使用密钥将明文&#xff08;未加密的数据&#xff09;转…

ApplicationContext为什么可以通过@Autowired 进行注入

一、分析 在我们日常开发中&#xff0c;有时我们会使用这样的的一段代码 app.getBean(User.class);那么这里的app就是ApplicationContext&#xff0c;如何获得这个ApplicatitionContext呢&#xff0c;无非就两种方式 实现ApplicationContextAware接口中的 setApplicationCon…

uniApp 调整小程序 单个/全部界面横屏展示效果

我们打开uni项目 小程序端运行 默认是竖着的一个效果 我们打开项目的 pages.json 给需要横屏的界面 的 style 属性 加上 "mp-weixin": {"pageOrientation": "landscape" }界面就横屏了 如果是要所有界面都横屏的话 就直接在pages.json 的 gl…

01、MongoDB -- 下载、安装、配置文件等配置 及 副本集配置

目录 MongoDB -- 下载、安装、配置 及 副本集配置启动命令启动 mongodb 的服务器&#xff08;单机和副本集&#xff09;启动单机模式的 mongodb 服务器启动副本集的 3 个副本节点&#xff08;mongodb 服务器&#xff09; 启动 mongodb 的客户端 MongoDB 下载MongoDB 安装1、解压…

2024全国水科技大会暨高氨氮废水厌氧氨氧化处理技术论坛(四)

一、会议背景 为积极应对“十四五”期间我国生态环境治理面临的挑战&#xff0c;加快生态环境科技创新&#xff0c;构建绿色技术创新体系&#xff0c;全面落实科学技术部、生态环境部等部委编制的《“十四五”生态环境领域科技创新专项规划》&#xff0c;积极落实省校合作&…

ABAP - SALV教程 01- 开篇:打开SALV的三种方式之一

关于SALV&#xff0c;这里参考巨佬江正军的文章讲解&#xff0c;在做SAP开发的遇到困难和瓶颈的时候&#xff0c;每每读到巨佬的文章都会灵感爆发、醍醐灌顶。https://www.cnblogs.com/jiangzhengjun/p/4291387.html 博主由于是由JAVA转型的ABAP开发&#xff0c;刚接触ABAP的时…

AI智能分析网关V4智慧环保/智慧垃圾站视频智能分析与监控方案

一、背景介绍 随着城市化进程的加速&#xff0c;垃圾处理问题日益受到人们的关注&#xff0c;传统的垃圾站管理方式已经无法满足现代社会的需求。针对当前垃圾站的监管需求&#xff0c;TSINGSEE青犀可基于旗下视频智能检测AI智能分析网关V4与安防监控视频综合管理系统EasyCVR平…