零拷贝技术深入分析

一、零拷贝

在前面的文章“深浅拷贝、COW及零拷贝”中对零拷贝进行过分析,但没有举例子,也没有深入进行展开分析。本文将结合实际的例程对零拷贝进行更深入的分析和说明。
在传统的IO操作中,以文件通过网络传输为例 ,一般会经历以下几个数据拷贝的过程:
磁盘缓冲区 ->内核缓冲区->用户缓冲区->内核网络缓冲区->网卡缓冲区
也就是数据要经历从IO到内核空间,再从内核到用户空间再进入内核空间然后才能通过IO发走,至少要有四次的内在拷贝。
而这就引出了零拷贝的概念:尽最大可能减少CPU参与数据拷贝的过程(直到完全不参与拷贝)。它主要有基于内核缓冲优化的零拷贝和DirectIO的零拷贝。
仍然以上面的链路来分析,可不可以直接从硬盘把数据(内核缓冲区)拷贝到网卡缓冲区,可不可以?可不可以不过用户缓冲区直接在内核内交互数据?这都是直接想到的解决问题的方法和手段。而实际上,零拷贝技术也就是按这种指导思想进行开展的。
零拷贝技术的实现有以下几种方法:
1、DirectIO
这个好理解,不通过各种中间环节直接和IO打交道。它主要应用于上层应用本身实现了磁盘的数据缓存,比如常见的数据库系统软件,那么就不需要再使用PageCache进行缓冲。这样就可以减少PageCache(内核缓冲区)的消耗(这可略过了计算中最大的中间商CPU)。而诸如下面的sendfile等,其实都基于PageCache优化的零拷贝。
2、新的函数sendfile(win:TransmitFile)
sendfile是Linux系统提供的系统API,它可以解决用户空间和内核空间的数据拷贝的次数问题;如果其和DMA技术(重点指SG-DMA(The Scatter-Gather Direct Memory Access))共同工作即sendfile+DMA,那么其效率更高,可以直接把数据文件从磁盘拷贝到网络缓冲区 。
sendfile有其一定的局限性,首先是标准不统一,另外一个就是无法在数据操作中间在用户空间对数据进行操作,比如从磁盘加载然后加解密等然后再发送,因为得不到具体的数据 ,这需要引起重视。
3、函数splice
splice技术更进一步,它接近于 sendfile和DMA的进一步效率提高,此函数在内核空间和网络缓冲区间建立管道,避免二者的CPU的拷贝。注意,此函数中的两个文件操作符必须有一个为管道操作符。
4、mmap
mmap方式大家比较熟悉,这里就简单说明一下,其实mmap的零拷贝就是通过内存映射提供一个内核和用户空间直接通信的手段。mmap应用非常多,最典型的是安卓的应用,Framework层的数据通信很多是用mmap为实现的。
5、tee
tee函数用来在两个管道文件描述符间复制数据。它要求两个文件描述符都必须为管道描述符;同时,它在复制过程中保持原数据不动直接复制fd,而splice是移动数据从源fd到目的fd。注意二者的区别和不同。
下面就分别对几类技术实现方式进行举例分析。在分析之前,先对原来的文章“深浅拷贝、COW及零拷贝”中零拷贝的图进行一下完善:

在这里插入图片描述

主要是补齐了未描述清楚的普通DMA部分的流程。

二、sendfile

先看一下定义:

int main(int argc, char* argv[])
{
......

    int ffd = open(fname, O_RDONLY);//打开文件
    struct stat st;
    fstat(ffd, &st);

    struct sockaddr_in addr;
    bzero(&addr, sizeof(addr));
    addr.sin_family = AF_INET;
    inet_pton(AF_INET, ip, &addr.sin_addr);
    addr.sin_port = htons(static_cast<uint16_t>(port));

    int s = socket(PF_INET, SOCK_STREAM, 0);

    int reuse = 1;//设置端口重用
    setsockopt(s, SOL_SOCKET, SO_REUSEPORT, &reuse, sizeof(reuse));

    int ret = bind(s, reinterpret_cast<struct sockaddr*>(&addr), sizeof(addr));

    ret = listen(s, 3);

    struct sockaddr_in client;
    socklen_t client_addrlen = sizeof(client);
    int cSocket = accept(s, reinterpret_cast<struct sockaddr*>(&client), &client_addrlen);
    if (cSocket < 0) {
        printf("accept err: %d\n", errno);
    }
    else {
        sendfile(cSocket, ffd, NULL, static_cast<size_t>(st.st_size));
        close(cSocket);
    }

......
    return 0;
}

注意上面的代码省略了相关的安全控制和参数赋值,大家可以自行设置,直接写成固定的就可以,只是一个测试程序么。

三、splice

splice的应用也不复杂,但需要注意其中的一些要求,特别是参数中,在Linux2.6.21以前,splice的flags设置SPLICE_F_MOVE有效,其后就无效了,但SPLICE_F_NONBLOCK 和SPLICE_F_MORE都有效果。看一下例程:

#include <fcntl.h>
#include <unistd.h>
#include <strings.h>
#include <arpa/inet.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <stdio.h>
#include <libgen.h>
#include <assert.h>
#include <stdlib.h>


int main(int argc, char* argv[])
{
......
    struct sockaddr_in addr;
    bzero(&addr, sizeof(addr));
    addr.sin_family = AF_INET;
    inet_pton(AF_INET, ip, &addr.sin_addr);
    addr.sin_port = htons(static_cast<uint16_t>(port));

    int sfd = socket(PF_INET, SOCK_STREAM, 0);

    int reuse = 1;
    setsockopt(sockfd, SOL_SOCKET, SO_REUSEPORT, &reuse, sizeof(reuse));

    int r = bind(sockfd, reinterpret_cast<sockaddr*>(&addr), sizeof(addr));

    r = listen(sockfd, 3);

    struct sockaddr_in cSocket;
    socklen_t client_addrlen = sizeof(cSocket);
    int cfd = accept(sfd, reinterpret_cast<sockaddr*>(&cSocket), &client_addrlen);
    if (cfd < 0) {
        printf("accept err: %d\n", errno);
    }
    else {
        int pfd[2];
        ret = pipe(pfd);

        while (1) {
            ssize_t res;

            res = splice(cfd, NULL, pfd[1], NULL, 1024, SPLICE_F_MORE | SPLICE_F_MOVE);
            if (res == 0) { // 收到EOF
                break;
            }

            res = splice(pfd[0], NULL, cfd, NULL, 1024, SPLICE_F_MORE | SPLICE_F_MOVE);
        }
        close(cfd);
    }

    close(sfd);
    return 0;
}

相关的具体参数可以看说明文档,还是相当清楚的。

四、tee和mmap

mmap的例子非常多,这里只给一个tee相关的例子:


#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <libgen.h>
#include <assert.h>


int main(int argc, char* argv[])
{
......
    int ffd = open(argv[1], O_CREAT | O_TRUNC | O_WRONLY, 0666);

    int pfdout[2];
    int r = pipe(pfdout);
    assert(r != -1);

    int pfdfile[2];
    r = pipe(pfdfile);

    while (1) {
        ssize_t res = splice(STDIN_FILENO, NULL, pfdout[1], NULL, 1024, SPLICE_F_MORE | SPLICE_F_MOVE);
        if (res == 0) {
            break;
        }

        res = tee(pfdout[0], pfdfile[1], 1024, SPLICE_F_NONBLOCK);

        res = splice(pfdfile[0], NULL, ffd, NULL, 1024, SPLICE_F_MORE | SPLICE_F_MOVE);
        assert(res != -1);
        // 二次调用,因为第一次调用数据已经移动,所以splice函数阻塞
        //res = splice(pfdfile[0], NULL, STDOUT_FILENO, NULL, 1024, SPLICE_F_MORE | SPLICE_F_MOVE);

    }

.......
    return 0;
}

这些都没有什么难度,手册上也都有相关的例程。

五、DMA技术和零拷贝

在上面的分析过程中可以清晰的知道,DMA技术和零拷贝既有千丝万缕的联系,又有所不同:
DMA技术是负责数据的直通,零拷贝重点是CPU不参与数据拷贝,但需要参与数据的管理(比如数据可以使用,开始操作等等),也就是说DMA技术和零拷贝技术中的CPU互相协作,达到数据拷贝的次数最少的目的。
零拷贝其实就是考虑减少从IO到用户层的整个数据流程的拷贝次数从而提高效率,要始终抓住这条主线。DMA主要是拷贝,CPU重点是管理,即把CPU从既管理又复制中简化工作任务,只管理即可。DMA技术和硬件关系很密切,所以在具体的开发使用中,要明确硬件是否支持相关具体的操作。
需要注意的另外一点是,在实际场景中,如果是非常大的数据文件处理,基于PageCache零拷贝技术则有些力不从心了,还是得使用Direct IO的零拷贝技术。

六、使用零拷贝的框架

说一些技术和概念可能理解并不深刻,可以参考一下相关的一些开源框架中使用的零拷贝技术:
1、KAFKA
使用sendfile的零拷贝技术
2、Nginx
提供了sendfile和directio的相关零拷贝技术
3、Mysql
使用了directio的零拷贝技术
4、Netty
使用sendfile的零拷贝技术
5、RocketMQ
使用了mmap write的零拷贝技术

七、总结

其实说得更浅显一些,所谓零拷贝更准确的说不是零次拷贝,是指尽可能的减少拷贝。在DPDK的系列文章中,这种操作被发挥的淋漓尽致。互联网的口号就是“不让中间商赚差价”,这个在现实上可能有一些逻辑上的BUG,但在内存操作上确实是非常用益。
当然,万事万物不是说是绝对的,有的时候,抽象一下,加一层,如果能达到更好的效果,又不影响实际的使用的情况下,岂不更妙?千头万绪又回到始终坚持的原则,应用场景决定应用技术,实践是检验真理的标准。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/420676.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【前端素材】推荐优质在线花卉商城电商网页Flowery平台模板(附源码)

一、需求分析 1、系统定义 在线花卉商城是一个通过互联网提供花卉销售服务的电子商务平台&#xff0c;用户可以在该平台上浏览、选择和购买各种花卉产品。 2、功能需求 在线花卉商城是一个通过互联网提供花卉销售服务的电子商务平台&#xff0c;用户可以在该平台上浏览、选…

内存取证 Volatility

文章目录 安装工具volatility和插件mimikatz[陇剑杯 2021]内存分析 内存分析工具 volatility&#xff0c;有Volatility2和Volatility3两种&#xff0c;分别基于Python2和Python3环境运行。说是一般Volatility2比Volatility3好用&#xff0c;所以我也选择的Volatility2版本。 一…

kubectl 陈述式资源管理方法

目录 陈述式资源管理方法 项目的生命周期 1.创建kubectl create命令 2.发布kubectl expose命令 service的4的基本类型 查看pod网络状态详细信息和 Service暴露的端口 查看关联后端的节点 ​编辑 查看 service 的描述信息 ​编辑在 node01 节点上操作&#xff0c;查看…

LeetCode 2120.执行所有后缀指令

现有一个 n x n 大小的网格&#xff0c;左上角单元格坐标 (0, 0) &#xff0c;右下角单元格坐标 (n - 1, n - 1) 。给你整数 n 和一个整数数组 startPos &#xff0c;其中 startPos [startrow, startcol] 表示机器人最开始在坐标为 (startrow, startcol) 的单元格上。 另给你…

前端的文字的字体应该如何设置

要设置文字的字体&#xff0c;在CSS中使用font-family属性。这个属性可以接受一个或多个字体名称作为其值&#xff0c;浏览器会按照列表中的顺序尝试使用这些字体渲染文本。如果第一个字体不可用&#xff0c;浏览器会尝试使用列表中的下一个字体&#xff0c;依此类推。 字体设…

SpringCloud gateway限流无效,redis版本低的问题

在使用springCloud gateway的限流功能的时候&#xff0c;配置RedisRateLimiter限流无效&#xff0c;后来发现是Redis版本过低导致的问题&#xff0c;实测 Redis版本为3.0.504时限流无效&#xff0c;改用7.0.x版本的Redis后限流生效。查了资料发现很多人都遇见过这个问题&#x…

让面试官眼前一黑,手把手带你打造个性化的 GitHub 首页

前期回顾 手机打开 第三方 “微信、快手、QQ、电话、信息” 等-CSDN博客https://blog.csdn.net/m0_57904695/article/details/136304084?spm1001.2014.3001.5501 &#x1f6a9;Github访问 Huo-zai-feng-lang-li (彩色之外) (github.com) &…

uniapp实现-审批流程效果

一、实现思路 需要要定义一个变量, 记录当前激活的步骤。通过数组的长度来循环数据&#xff0c;如果有就采用3元一次进行选择。 把循环里面的变量【name、status、time】, 全部替换为取出的那一项的值。然后继续下一次循环。 虚拟的数据都是请求来的, 组装为好渲染的格式。 二…

【python基础学习04课_python的字典】

字典 一、字典的定义 1、定义 字典&#xff1a;具有键值对 映射关系的一组无序的数据组合key: value key不变(不能够重复的&#xff0c;通常用str) value可变(可以用很多类型)通过key来找到对应的value标识符&#xff1a;{}关键字: dict无序&#xff1a;没有下标 2、打印…

Beans模块之工厂模块Aware

博主介绍:✌全网粉丝5W+,全栈开发工程师,从事多年软件开发,在大厂呆过。持有软件中级、六级等证书。可提供微服务项目搭建与毕业项目实战,博主也曾写过优秀论文,查重率极低,在这方面有丰富的经验✌ 博主作品:《Java项目案例》主要基于SpringBoot+MyBatis/MyBatis-plus+…

Java ElasticSearch-Linux面试题

Java ElasticSearch-Linux面试题 前言1、守护线程的作用&#xff1f;2、链路追踪Skywalking用过吗&#xff1f;3、你对G1收集器了解吗&#xff1f;4、你们项目用的什么垃圾收集器&#xff1f;5、内存溢出和内存泄露的区别&#xff1f;6、什么是Spring Cloud Bus&#xff1f;7、…

常用sql语句及其优化

文章目录 介绍常用sql语句1. 数据查询1.1 SELECT 语句1.2 DISTINCT 关键字1.3 WHERE 子句1.4 ORDER BY 子句1.5 LIMIT 关键字 2. 数据更新2.1 INSERT INTO 语句2.2 UPDATE 语句2.3 DELETE FROM 语句 3. 数据管理3.1 CREATE TABLE 语句3.2 ALTER TABLE 语句3.3 DROP TABLE 语句 …

十八:Java8新特性

文章目录 01、Java8概述02、Java8新特性的好处03、并行流与串行流04、Lambda表达式4.1、Lambda表达式使用举例4.2、Lambda表达式语法的使用14.3、Lambda表达式语法的使用2 05、函数式(Functional)接口5.1、函数式接口的介绍5.2、Java内置的函数式接口介绍及使用举例 06、方法引…

shopify如何使用代码片段进行代码优化

在Shopify中&#xff0c;您可以使用代码片段来进行代码优化。代码片段是一种在主题中重复使用的可重用代码块。通过使用代码片段&#xff0c;您可以将常用的代码逻辑封装起来&#xff0c;提高代码的可维护性和重用性。以下是在Shopify中使用代码片段进行代码优化的步骤&#xf…

笔记73:ROS中的各种消息包

参考视频&#xff1a; 33.ROS 的标准消息包 std_msgs_哔哩哔哩_bilibili 34. ROS 中的几何包 geometry_msgs 和 传感器包 sensor_msgs_哔哩哔哩_bilibili 标准消息包&#xff1a;std_msgs常用消息包&#xff1a;common_msgs导航消息包&#xff1a;nav_msgs几何消息包&#xf…

遥感影像处理(ENVI+ChatGPT+python+ GEE)处理高光谱及多光谱遥感数据

遥感技术主要通过卫星和飞机从远处观察和测量我们的环境&#xff0c;是理解和监测地球物理、化学和生物系统的基石。ChatGPT是由OpenAI开发的最先进的语言模型&#xff0c;在理解和生成人类语言方面表现出了非凡的能力。本文重点介绍ChatGPT在遥感中的应用&#xff0c;人工智能…

SpringBoot项目连接Redis报错:Connection refused: no further information

今天在使用SpringBoot连接Redis时发生了报错 明明Jedis能够连接成功为什么StringRedisTemplate就不行? 然后在网上找了一下说是关闭防火墙或者修改配置文件但是都不管用 最后发现是Redis在SpringBoot3之后yml的配置方式发生了改变 相较于之前多了一个前缀, 由于我刚开始没有…

600万订单每秒Disruptor +SpringBoot,如何解决消息不丢失?

尼恩说在前面 在40岁老架构师 尼恩的读者交流群(50)中&#xff0c;最近有小伙伴拿到了一线互联网企业如得物、阿里、滴滴、极兔、有赞、shein 希音、百度、网易的面试资格&#xff0c;遇到很多很重要的面试题&#xff1a; Disruptor 官方说能达到每秒600w OPS订单处理能力&…

databinding双向绑定原理,Android程序员最新职业规划

1. Android架构设计模式 MVC架构设计模式&#xff1a;MVC全名是Model View Controller&#xff0c;是模型(model)-视图(view)-控制器(controller)的缩写。MVP架构设计模式&#xff1a;MVC全名是Model View Persenter&#xff0c;MVP由MVC演变而来&#xff0c;是现在主流的开发…

IDEA切换 Springboot初始化 URL

&#x1f339;作者主页&#xff1a;青花锁 &#x1f339;简介&#xff1a;Java领域优质创作者&#x1f3c6;、Java微服务架构公号作者&#x1f604; &#x1f339;简历模板、学习资料、面试题库、技术互助 &#x1f339;文末获取联系方式 &#x1f4dd; 往期热门专栏回顾 专栏…