Sophon AutoCV推动AI应用从模型生产到高效落地

随着技术市场和应用方向的逐渐成熟,人工智能与各行各业的结合和落地逐渐进入了深水区。

虽然由于行业规模化和应用普及度的限制,人工智能在“传统”行业的落地不如消费互联网行业,但是借助人工智能为“传统”行业的发展注入新能量一直是相关从业者探索的方向和创造数据价值的重要途径。

从人工智能落地的市场上来看,目前的业务场景主要有两种类型:较成熟的存量智能化场景与新兴而广泛的长尾智能化场景。

在存量智能化场景中,用户通常拥有大量内置通用模型或与之相关的业务应用系统,来解决诸如智能安防监控需求,此类业务通常场景单一,价值传递简单;

但随着业务变化与发展, 算法精度的提升需求随之越发的强烈,同时业务需求也日益复杂。

而在长尾智能化场景中,业务导向更加明显,智能分析场景碎片化且通常传递链条较长,和业务价值高度相关,此情况下用户往往是期望通过有效的手段进行快速的从数据到人工智能模型到业务价值的验证,从而达到能够直接落地,快速提升数据价值和业务价值的目的。


Sophon AutoCV是由星环科技自主研发,提供视觉模型训练、应用部署和管理能力的一站式CV模型生产应用平台。

不仅支持存量智能场景中的模型高精度迭代,还能帮助企业快速落地新的智能化场景,解决传统智能场景中存在的模型维护、迭代效率低、建模周期长、部署成本高、数据资产积累难等应用痛点。

平台还具有样本数据管理、人工协同与自动化数据标注、引导式模型和低代码应用构建等能力,提供“数据”到“模型”再到“应用”的端到端模型生产和应用部署一体化功能,帮助企业实现CV模型从快速生产到部署。

下面让我们通过建筑业、制造业、科研教育、城市管理、泛金融场景、OCR图文识别场景六大方向,看看Sophon AutoCV如何高效助力人工智能应用从模型生产到落地的全过程。

建筑业

当前,建筑业智能化升级时机已经成熟。计算机视觉技术与建筑业深度融合,正在成为推动建筑业转型升级的重要力量。据统计,目前我国建筑业信息化率约为0.04%,远低于国际建筑业信息化率0.3%的平均水平,国内建筑业信息化空间巨大。

星环Sophon AutoCV针对建筑业生产系统之间存在地理覆盖区域广、操作人员多的情况,设备异常及生产安全等问题,通过训练预置模型,助力智慧工地持续健康发展。

智慧工地安全监测

因人力监控难以时刻覆盖,工地常常被安全事故隐患大及安全管理难度大的问题所困扰。基于Sophon AutoCV构建统一视频分析平台,提供预置智能AI模型实现工地生产的安全监测和防护。

智慧工地安全监测系统实现了现场实时安全隐患排查、人员动态监控、作业防护预警等功能,可快速提高应急响应速度和事件处置速度;此外,帮助工地从被动监控向主动监控迈进,实现事前预警-事中检测-事后规范管理全流程监控,弥补传统方法和技术在监管中的缺陷。

智慧配电房安全管理

配电房电量大且设备多,为了保证工人的安全会要求工人遵守安全规范。除此之外,配电房还要防止小动物进入,避免引起故障或者破坏,有一定的管理难度。基于Sophon AutoCV构建了统一视频分析平台,提供预置智能AI模型实现配电房的安全监测和防护。

智慧配电房安全管理平台能够实时检测工作场景下人员穿戴和操作是否符合规范,并对检测结果进行分析判断,实现管理精准化、智能化;通过对环境和人员进行智能检测,及时发现老鼠等异物入侵行为,杜绝可能引起的故障和破坏。通过对开关柜开关状态以及编号识别,可远程实时监控刀闸状态,实现开关柜异常状态告警。

制造业

制造业是国民经济的主体,制造业发展水平直接影响着我国经济的发展。制造业智能化发展仍有问题亟待解决,例如:智能识别系统建设滞后、产品质量参差不齐、缺乏统一标准等。

星环Sophon AutoCV平台支持数据、模型和应用的版本管理,以应对使用过程中业务需求的动态变更。结合预置的算法及预训练模型,帮助企业训练出高精度的CV模型,助力企业制造业高水平发展。

钢管材生产缺陷检测

某制造业客户通过平台对其生产的钢营材进行缺陷检测,主要包括:夹、未焊透、末熔合、气孔、裂纹5类,随着日常的生产会新增缺陷的类别。

基于Sophon AutoCV搭建的一站式模型生产平台,支持目标检测、图像分类和实例分割等类型的数据标注,满足不同缺陷类别的结构化数据生产。

通过上线模型的预标注功能,对于新增迭代的样本,可快速进行模型预刷,提高标注效率。配合引导式模型训练功能,加速模型从0-1的生产过程,增量训练可快速进行模型的选代训练。

钢管材生产缺陷检测平台上线后,客户和算法人员都可方便的查看和管理数据,并通过引导式建模和增量训练,将模型生产周期从“月”缩短至“周”,加快模型上线。

科研教育

科研教育是我国高等教育的重要组成部分,也是国家战略性支柱产业。星环Sophon AutoCV一站式模型生产和应用平台,提供优质的模型生产及搭建服务,为高质量科学研究赋能,助力国家科教兴国战略。

科研机构海洋生物多样性分析

在对海洋资源尤其以鱼类为代表的生物资源开发探测过程中,因前期积累较少,鱼类种类复杂,故该场景需要从0到1进行模型的搭建,技术复杂度高。

基于Sophon AutoCV搭建一站式模型生产和应用平台搭建海洋生物的识别模型,并基于平台的数据监测回流及增量训练功能实现模型迭代。

Sophon AutoCV帮助科研机构快速上线海洋生物识别的AI能力,其全流程平台化的操作降低了客户运维成本,且借助平台的数据监测回流及增量训练功能保障了模型的长期迭代

城市管理

现代城市管理有场景复杂,数据庞大的特点,城市管理智慧化的升级刻不容缓。星环科技Sophon AutoCV提供平台统一模型管理,实现城市各领域高效、智能和精细化管理,助力城市治理现代化升级。

城市智慧高速公路

城市高速公路车流量较大,依靠人工进行信息、流量识别的方式增加了高速公路的管理难度,亟需由人工监管转为智能化检测。

基于边缘计算平台研发车辆识别的AI算法对视频进行图像识别和智能分析,实现流量及信息实时识别,并将车辆信息及拥堵情况反馈高速数据中心。



,时长00:31

 

借助星环Sophon AutoCV平台对高速公路进行24h不间断监测识别,一方面减少了高速管理的人力投入,另一方面也保障了高速的道路畅通。

泛金融场景

金融行业数据资源丰富,数据依赖程度高,场景安全要求高,目前人工智能技术已成为金融行业的必备基础。星环科技借助自身优势,推动传统金融机构的数字化转型,助力商业价值增长。

农业保险远程核保

农业保险期望通过线上的方式进行死猪/牛的远程估重和投保猪、牛的一致性比对,根据结果来进行远程赔付,以提升工作效率。

基于Sophon AutoCV搭建一站式模型生产和应用平台:通过数据标注及引导式的模型训练,完成死猪/牛的分割模型,形成死猪/牛估重的整体方案。

Sophon AutoCV帮助用户快速上线死猪/牛估重的AI能力,猪/牛脸识别技术可精准判断投保猪/牛和登记的一致性,辅助客户进行决策,将农业保险远程核保变为可能,并通过全流程平台化的操作,降低客户运维成本。

金融机构金融仓管

金融机构期望实现远程的智能化仓管,解决人工巡检、异常状况以及仓管人员的操作行为记录等效率低下等问题。

Sophon AutoCV融合图像和光流信息,实现行为工作的精准识别;7×24监控库内场景,及时预警明火烟雾等危险情况;现场部署边缘计算盒子,统一接入远程监控。

Sophon AutoCV 7×24h不间断监控取代人工巡查,实现运营成本下降30%;平台支持算法技术优化,不断提升人/物识别精准度;将计算机视觉技术运用到金融仓管领域,并支持快速标准化复制,属业内首创。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/419781.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Windows系统x86机器安装龙芯(loongarch64)3A5000虚拟机系统详细教程

本次介绍在window系统x86机器上安装loongarch64系统的详细教程。 1.安装环境准备。 首先,你得有台电脑。 配置别太差,至少4核8G内存,安装window10或者11都行(为啥不能是Window7,你要用也不是不行,你先解决…

边缘计算与任务卸载基础知识

目录 边缘计算简介任务卸载简介参考文献 边缘计算简介 边缘计算是指利用靠近数据生成的网络边缘侧的设备(如移动设备、基站、边缘服务器、边缘云等)的计算能力和存储能力,使得数据和任务能够就近得到处理和执行。 一个典型的边缘计算系统为…

未来已来:智慧餐饮点餐系统引领餐饮业的数字化转型

时下,智慧餐饮点餐系统正在引领着餐饮业迈向更高的位置。今天,小编将与大家共同探讨智慧餐饮点餐系统的发展趋势、优势以及对餐饮业的影响。 一、智慧餐饮点餐系统的发展趋势 智慧餐饮点餐系统的出现填补了这一空白,它通过引入数字化技术&a…

学习助手:借助AI大模型,学习更高效!

在当今的数字时代,人工智能(AI)的崛起已经彻底改变了我们获取信息、处理数据以及学习新知识的方式。AI大模型,特别是如OpenAI开发的GPT-4这类先进的技术,已成为学习和教育领域的一大助力。本文旨在探索如何借助AI大模型…

5G时代对于工业化场景应用有什么改善

5G 不仅仅是 4G 的技术升级,而是将平板电脑和智能手机的技术升级。除了更好的高清视频流和其他高带宽应用,消费者不会注意到很多性能差异。然而,在工业领域,5G 代表着巨大的飞跃。 在工厂和厂房内, 设备的Wi-Fi 网络经…

Python+Selenium+Unittest 之Unittest1--简介

Unittest属于是一种单元测试框架,主要用于对代码中写好的单元内容进行验证,比如写好一个函数,可以使用unittest去进行验证该函数的代码逻辑是否有问题,对于自动化来说,可以去检验每条用例的内容是否符合预期。 Unittes…

Goose:Golang中的数据库迁移工具

Goose:Golang中的数据库迁移工具 在Golang开发中,数据库迁移是一个常见的任务,用于管理数据库模式的演化和版本控制。Goose是一个轻量级的、易于使用的数据库迁移工具,专为Golang开发者设计。本文将介绍Goose的基本概念、用法和优…

php基础学习之错误处理(其二)

在实际应用中,开发者当然不希望把自己开发的程序的错误暴露给用户,一方面会动摇客户对己方的信心,另一方面容易被攻击者抓住漏洞实施攻击,同时开发者本身需要及时收集错误,因此需要合理的设置错误显示与记录错误日志 一…

代码随想录-回溯算法

组合 //未剪枝 class Solution {List<List<Integer>> ans new ArrayList<>();Deque<Integer> path new LinkedList<>();public List<List<Integer>> combine(int n, int k) {backtracking(n, k, 1);return ans;}public void back…

Python:关于数据服务中的Web API的设计

搭建类似joinquant、tushare类似的私有数据服务应用&#xff0c;有以下一些点需要注意&#xff1a; 需要说明的是&#xff0c;这里讨论的是web api前后端&#xff0c;当然还有其它方案&#xff0c;thrift&#xff0c;grpc等。因为要考虑到一鱼两吃&#xff0c;本文只探讨web ap…

Android之UI Automator框架源码分析(第九篇:UiDevice获取UiAutomation对象的过程分析)

前言 学习UiDevice对象&#xff0c;就需要看它的构造方法&#xff0c;构造方法中有UiDevice对象持有一些对象&#xff0c;每个对象都是我们分析程序的重点&#xff0c;毕竟UiDevice对象的功能&#xff0c;依赖这些组合的对象 备注&#xff1a;当前对象持有的对象&#xff0c;初…

Linux调试器-gdb使用与冯诺依曼体系结构

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言 Linux调试器-gdb使用 1. 背景 2. 开始使用 冯诺依曼体系结构 总结 前言 世上有两种耀眼的光芒&#xff0c;一种是正在升起的太阳&#xff0c;一种是正在努力学…

k8s部署mysql

&#xff08;作者&#xff1a;陈玓玏&#xff09; 一、前置条件 已部署k8s&#xff0c;服务端版本为1.21.14 二、部署mysql 拉取镜像&#xff1b; docker pull mysql将账号密码等信息写到configmap&#xff0c;创建configmap&#xff1b; apiVersion: v1 kind: ConfigMap m…

视觉AIGC识别——人脸伪造检测、误差特征 + 不可见水印

视觉AIGC识别——人脸伪造检测、误差特征 不可见水印 前言视觉AIGC识别【误差特征】DIRE for Diffusion-Generated Image Detection方法扩散模型的角色DIRE作为检测指标 实验结果泛化能力和抗扰动 人脸伪造监测&#xff08;Face Forgery Detection&#xff09;人脸伪造图生成 …

android TextView 实现富文本显示

android TextView 实现富文本显示&#xff0c;实现抖音直播间公屏消息案例 使用&#xff1a; val tvContent: TextView helper.getView(R.id.tvContent)//自己根据UI业务要求&#xff0c;可以控制 图标显示 大小val levelLabel MyImgLabel( bitmap 自己业务上的bitmap )va…

卷积神经网络基本概念补充

卷积&#xff08;convolution&#xff09;、通道&#xff08;channel&#xff09; 卷积核大小一般为奇数&#xff0c;有中心像素点&#xff0c;便于定位卷积核。 步长&#xff08;stride&#xff09;、填充&#xff08;padding&#xff09; 卷积核移动的步长&#xff08;stride…

FPGA之带有进位逻辑的加法运算

module ADDER&#xff08; input [5&#xff1a;0]A&#xff0c; input [5&#xff1a;0]B&#xff0c;output[6&#xff1a;0]Q &#xff09;&#xff1b; assign Q AB&#xff1b; endmodule 综合结果如下图所示&#xff1a; 使用了6个Lut&#xff0c;&#xff0c;6个LUT分布…

定制红酒:一次满足需求的个性化服务体验

云仓酒庄洒派提供一次满足需求的个性化服务体验&#xff0c;让您的红酒定制之旅成为一段美好的记忆。 首先&#xff0c;云仓酒庄洒派深入了解每位消费者的需求。无论是对于红酒品种、年份、外包装还是其他个性化要求&#xff0c;云仓酒庄洒派都认真倾听并记录下来。这种细致入微…

Solo 开发者周刊 (第6期):

这里会整合 Solo 社区每周推广内容、产品模块或活动投稿&#xff0c;每周五发布。在这期周刊中&#xff0c;我们将深入探讨开源软件产品的开发旅程&#xff0c;分享来自一线独立开发者的经验和见解。本杂志开源&#xff0c;欢迎投稿。 产品推荐 1. 助眠类播客《静夜斋》上线 一…

echarts鼠标向右/向左绘制实现放大/还原

echarts toolbox 的datazoom提供了绘制放大的功能&#xff0c;但通过鼠标绘制只能进行放大 应需求放大与还原都通过鼠标行为实现&#xff0c;增加从右往左绘制时还原放大结果 demo 结果 重写datazoom的原型方法实现绘制事件的拦截 const comp myChart._model.getComponent(to…