LaMa Image Inpainting 图像修复 ONNX Runtime Demo

目录

介绍

效果 

模型信息

项目

代码

下载


LaMa Image Inpainting 图像修复 Onnx Demo

介绍

gihub地址:https://github.com/advimman/lama

🦙 LaMa Image Inpainting, Resolution-robust Large Mask Inpainting with Fourier Convolutions, WACV 2022

效果 

模型信息

Model Properties
-------------------------
---------------------------------------------------------------

Inputs
-------------------------
name:image
tensor:Float[1, 3, 1000, 1504]
name:mask
tensor:Float[1, 1, 1000, 1504]
---------------------------------------------------------------

Outputs
-------------------------
name:inpainted
tensor:Float[1, 1000, 1504, 3]
---------------------------------------------------------------

项目

代码

using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;

namespace Onnx_Demo
{
    public partial class Form1 : Form
    {
        public Form1()
        {
            InitializeComponent();
        }

        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string image_path = "";
        string image_path_mask = "";
        DateTime dt1 = DateTime.Now;
        DateTime dt2 = DateTime.Now;
        string model_path;
        Mat image;
        Mat image_mask;

        SessionOptions options;
        InferenceSession onnx_session;
        Tensor<float> input_tensor;
        Tensor<float> input_tensor_mask;
        List<NamedOnnxValue> input_container;
        IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;

        StringBuilder sb = new StringBuilder();

        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;
            pictureBox1.Image = null;
            image_path = ofd.FileName;
            pictureBox1.Image = new Bitmap(image_path);
            textBox1.Text = "";
            image = new Mat(image_path);
            pictureBox2.Image = null;
        }

        private void button2_Click(object sender, EventArgs e)
        {
            if (image_path == "")
            {
                return;
            }

            button2.Enabled = false;
            pictureBox2.Image = null;
            textBox1.Text = "";

            image = new Mat(image_path);
            int w = image.Width;
            int h = image.Height;
            image_mask = new Mat(image_path_mask);

            Common.Preprocess(image, image_mask, input_tensor, input_tensor_mask);

            //将 input_tensor 放入一个输入参数的容器,并指定名称
            input_container.Add(NamedOnnxValue.CreateFromTensor("image", input_tensor));

            //将 input_tensor_mask 放入一个输入参数的容器,并指定名称
            input_container.Add(NamedOnnxValue.CreateFromTensor("mask", input_tensor_mask));

            dt1 = DateTime.Now;
            //运行 Inference 并获取结果
            result_infer = onnx_session.Run(input_container);
            dt2 = DateTime.Now;

            Mat result = Common.Postprocess(result_infer);

            Cv2.Resize(result, result, new OpenCvSharp.Size(w, h));

            sb.AppendLine("推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms");

            pictureBox2.Image = new Bitmap(result.ToMemoryStream());
            textBox1.Text = sb.ToString();

            button2.Enabled = true;
        }

        private void Form1_Load(object sender, EventArgs e)
        {
            model_path = "model/big_lama_regular_inpaint.onnx";

            // 创建输出会话,用于输出模型读取信息
            options = new SessionOptions();
            options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
            options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行

            // 创建推理模型类,读取本地模型文件
            onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径

            // 输入Tensor
            input_tensor = new DenseTensor<float>(new[] { 1, 3, 1000, 1504 });

            input_tensor_mask = new DenseTensor<float>(new[] { 1, 1, 1000, 1504 });

            // 创建输入容器
            input_container = new List<NamedOnnxValue>();

            image_path = "test_img/test.jpg";
            pictureBox1.Image = new Bitmap(image_path);

            image_path_mask = "test_img/mask.jpg";
            pictureBox3.Image = new Bitmap(image_path_mask);
        }
    }
}

下载

源码下载

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/419619.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

C++——友元

目录 友元 友元函数 友元函数使用案例 友元类 友元 友元是C提供的一种突破封装&#xff08;突破类域&#xff09;的方式&#xff0c;有时提供了便利。但是友元会增加耦合度&#xff0c;但破坏了封装&#xff0c;所以友元不宜多用。友元分为友元函数和友元类。 友元函数 友元…

SpringBoot 的基础使用与入门(总结众多文章与实践)

一&#xff1a;介绍 1、SpringBoot概念 从最根本上来讲&#xff0c;Spring Boot就是一些库的集合&#xff0c;它能够被任意项目的构建系统所使用。简便起见&#xff0c;该框架也提供了命令行界面&#xff0c;它可以用来运行和测试Boot应用。框架的发布版本&#xff0c;包括集成…

电脑DLL修复工具,一键解决计算机dll丢失

mfc120u.dll 是一个属于 Microsoft Visual Studio 2013 或相关版本的 Microsoft Foundation Classes (MFC) 动态链接库(DLL)文件。MFC 是一个用于简化 Windows 应用程序开发的 C 类库&#xff0c;它封装了许多Windows API 函数&#xff0c;使开发者更容易创建 Windows 应用程序…

C语言 vs Rust应该学习哪个?

C语言 vs Rust应该学习哪个&#xff1f; 在开始前我有一些资料&#xff0c;是我根据网友给的问题精心整理了一份「C语言的资料从专业入门到高级教程」&#xff0c; 点个关注在评论区回复“888”之后私信回复“888”&#xff0c;全部无偿共享给大家&#xff01;&#xff01;&am…

Github配置ssh key的步骤

1. 检查本地主机是否已经存在ssh key 是否存在 id_rsa 和 id_rsa.pub文件&#xff0c;如果存在&#xff0c;说明已经有SSH Key 如下图所示&#xff0c;则表明已经存在 如果存在&#xff0c;直接跳到第三步 2. 生成ssh key 如果不存在ssh key&#xff0c;使用如下命令生…

奇点云:SAFe框架下,我们对平台软件工程生产线做了4项改造

导读&#xff1a; 客户规模扩大&#xff0c;如何保证大数据软件产品和服务质量始终如一&#xff1f;几乎所有成长中的软件厂商&#xff0c;尤其是需要通过私有化部署交付的厂商&#xff0c;都会面临这个问题。正如《人月神话》中多次表明的&#xff0c;单纯地增加人手、扩大团队…

吴恩达deeplearning.ai:sigmoid函数的替代方案以及激活函数的选择

以下内容有任何不理解可以翻看我之前的博客哦&#xff1a;吴恩达deeplearning.ai专栏 文章目录 引入——改进下需求预测模型ReLU函数(整流线性单元 rectified linear unit&#xff09;线性激活函数(linear activation function)激活函数的选择实现方式为什么需要激活函数 到现在…

使用SSH推拉Github代码

快速使用 ssh-keygen -t rsa -b 4096 -C "your_emailexample.com 创建ssh密钥&#xff08;一直回车&#xff0c;不要指定目录&#xff0c;不要设置密码&#xff09;将生成的 ~/id_ras.pub 中的内容复制到Github对应位置即可 1.SSH简介 SSH&#xff08;Secure Shell&…

Python实现时间序列分析动态因子模型(DynamicFactor算法)项目实战

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档视频讲解&#xff09;&#xff0c;如需数据代码文档视频讲解可以直接到文章最后获取。 1.项目背景 动态因子模型&#xff08;Dynamic Factor Models, DFM&#xff09;是一种统计学和计量经济学中用于处理…

算法项目外包的收费方式

针对算法研究性项目的收费方式和注意事项&#xff0c;这取决于项目的具体性质、规模和所涉及的技术领域。以下是一些常见的收费方式和需要注意的问题&#xff0c;希望对大家有所帮助。北京木奇移动技术有限公司&#xff0c;专业的软件外包开发公司&#xff0c;欢迎交流合作。 收…

Spring Exception 常见错误

今天&#xff0c;来学习 Spring 的异常处理机制。Spring 提供了一套健全的异常处理框架&#xff0c;以便我们在开发应用的时候对异常进行处理。但是&#xff0c;我们也会在使用的时候遇到一些麻烦&#xff0c;接下来我将通过两个典型的错误案例&#xff0c;带着你结合源码进行深…

WEB漏洞 SSRF简单入门实践

一、漏洞原理 SSRF 服务端请求伪造 原理&#xff1a;在某些网站中提供了从其他服务器获取数据的功能&#xff0c;攻击者能通过构造恶意的URL参数&#xff0c;恶意利用后可作为代理攻击远程或本地的服务器。 二、SSRF的利用 1.对目标外网、内网进行端口扫描。 2.攻击内网或本地的…

Selenium自动化落地实践

01、自动化测试流程图 02、主要过程描述 1、自动化测试的切入点 开展自动化测试的时间点很关键&#xff0c;需要在系统已经过多版本的系统测试&#xff0c;达到稳定之后。 2、可行性分析 在进行项目自动化测试之前&#xff0c;第一步就是要确认其可行性&#xff0c;是否可以…

物联网与智慧城市的融合:构建智能化、便捷化、绿色化的城市未来

一、引言 随着科技的飞速发展和城市化的不断推进&#xff0c;物联网技术正逐步渗透到城市的各个领域&#xff0c;成为推动智慧城市建设的核心力量。物联网与智慧城市的融合&#xff0c;不仅为城市治理提供了高效、智能的解决方案&#xff0c;也为市民的生活带来了前所未有的便…

canvas坐标系统 webgl坐标系统 uv纹理坐标系统 原点

一、canvas原点在左上角&#xff0c;x轴正方向向右&#xff0c;y轴正方向向下&#xff0c;一个点对应一个像素 二、webgl原点在正中间&#xff0c;x轴正方向向右&#xff0c;y轴正方向向上&#xff0c;数据显示范围在[-1,1]之间&#xff0c;超过此范围不显示数据 三、uv原点在左…

【wpf】关于绑定的一点明悟

背景简介 软件功能为&#xff0c;读取一个文件夹下的所有子文件夹&#xff0c;每个文件夹对自动对应生成 一组 “按键四个勾选” 按键点击触发&#xff0c;可以发送与其对应文件夹中的一些内容。这个绑定的过程我在之前的文章有过详细的介绍&#xff0c;非常的简单。 这里回顾…

白话大模型② | 如何提升AI分析的准确性?

白话大模型系列共六篇文章&#xff0c;将通俗易懂的解读大模型相关的专业术语。本文为第二篇&#xff1a;如何提升AI分析的准确性&#xff1f; 作者&#xff1a;星环科技 人工智能产品部 面对AI分析落地时的数量化、准确性、泛化性等问题&#xff0c;让我们稍微深入了解下当前…

【Linux C | 网络编程】getaddrinfo 函数详解及C语言例子

&#x1f601;博客主页&#x1f601;&#xff1a;&#x1f680;https://blog.csdn.net/wkd_007&#x1f680; &#x1f911;博客内容&#x1f911;&#xff1a;&#x1f36d;嵌入式开发、Linux、C语言、C、数据结构、音视频&#x1f36d; &#x1f923;本文内容&#x1f923;&a…

Redis冲冲冲——事务支持,AOF和RDB持久化

目录 引出Redis事务支持&#xff0c;AOF和RDB持久化1、Redis的事务支持2、Redis的持久化 Redis冲冲冲——缓存三兄弟&#xff1a;缓存击穿、穿透、雪崩缓存击穿缓存穿透缓存雪崩 总结 引出 Redis冲冲冲——事务支持&#xff0c;AOF和RDB持久化 Redis事务支持&#xff0c;AOF和…

Find My扫地机器人|苹果Find My技术与机器人结合,智能防丢,全球定位

扫地机器人又称自动打扫机、智能吸尘、机器人吸尘器等&#xff0c;是智能家电的一种&#xff0c;能凭借人工智能&#xff0c;自动在房间内完成地板清理工作。一般采用刷扫和真空方式&#xff0c;将地面杂物先吸纳进入自身的垃圾收纳盒&#xff0c;从而完成地面清理的功能。现今…