数据结构——lesson4带头双向循环链表实现

前言✨✨

💥个人主页:大耳朵土土垚-CSDN博客

💥 所属专栏:数据结构学习笔记​​​​​​

💥双链表与单链表的区分:单链表介绍与实现

💥对于malloc函数有疑问的:动态内存函数介绍

   感谢大家的观看与支持🌹🌹🌹 

   有问题可以写在评论区或者私信我哦~

 

目录

前言✨✨

一、💥💥什么是带头双向循环链表?

二、🥳🥳带头双向循环链表的实现 

1 .搭建链表基础

2.从内存中开辟一个节点

3. 创建返回链表的头结点

4.双向链表销毁

5.双向链表打印 

6.双向链表尾插 

7.双向链表尾删

8.双向链表头插 

9.双向链表头删 

10.双向链表查找

11.双向链表在pos的前面进行插入 

12.双向链表删除pos位置的节点 

三、💫💫拓展

四、🎉🎉结言 


一、💥💥什么是带头双向循环链表?

 

带头双向循环链表(Doubly Circular Linked List with a Head)是一种链表数据结构,它具有以下特点:

1.头节点:带头双向循环链表包含一个头节点,它位于链表的起始位置,并且不存储实际数据。头节点的前驱指针指向尾节点,头节点的后继指针指向第一个实际数据节点。

2.循环连接:尾节点的后继指针指向头节点,而头节点的前驱指针指向尾节点,将链表形成一个循环连接的闭环。这样可以使链表在遍历时可以无限循环,方便实现循环操作。

3.双向连接:每个节点都有一个前驱指针和一个后继指针,使得节点可以向前和向后遍历。前驱指针指向前一个节点,后继指针指向后一个节点。

        总结:带头双向循环链表可以支持在链表的任意位置进行插入和删除操作,并且可以实现正向和反向的循环遍历。通过循环连接的特性,链表可以在连续的循环中遍历所有节点,使得链表的操作更加灵活和高效。

如下图所示:

 

 

结构最复杂,一般用在单独存储数据。实际中使用的链表数据结构,都是带头双向循环链表。另外这个结构虽然结构复杂,但是使用代码实现以后会发现结构会带来很多优势,实现反而简单了。 

二、🥳🥳带头双向循环链表的实现 

1 .搭建链表基础

带头双向循环链表需要三个变量,两个存放指向前后节点的指针,另一个存放数据

// 带头+双向+循环链表增删查改实现
typedef int LTDataType;
typedef struct ListNode
{
	LTDataType data;//存放数据
	struct ListNode* next;//指向下一个节点
	struct ListNode* prev;//指向上一个节点
}ListNode;

2.从内存中开辟一个节点

使用malloc函数开辟节点

//从内存中开辟一个节点
ListNode* BuyNode(LTDataType x)
{
	ListNode* buynode = (ListNode*)malloc(sizeof(struct ListNode));
	if (buynode == NULL)//开辟失败
	{
		perror("malloc fail");
	}
	buynode->data = x;
	buynode->next = NULL;
	buynode->prev = NULL;
	
}

 

3. 创建返回链表的头结点
 

开始时头节点两个指针都指向自己

//创建返回链表的头结点.
ListNode* ListCreate()
{
	ListNode* head = BuyNode(-1);//这里将头节点数据设为-1,任意数都可以
	head->next = head;
	head->prev = head;
	return head;
}

 

4.双向链表销毁

 malloc开辟空间后要使用free销毁内存空间,防止内存泄漏

// 双向链表销毁
void ListDestory(ListNode* pHead)
{
	assert(pHead);
	ListNode* cur = pHead->next;//头节点最后销毁
	while (cur != pHead)//循环一遍
	{
		ListNode* next = cur->next;//保存下一个节点,防止丢失
		free(cur);//销毁节点
		cur = next;
	}
	free(pHead);//销毁头节点
}

5.双向链表打印 

 

//双向链表打印
void ListPrint(ListNode* pHead)
{
	assert(pHead);
	if (pHead->next == pHead)//没有节点的情况,也可以不考虑
	{
		printf("pHead<=>pHead");
		return;
	}
	//有节点的情况
	printf("pHead<=>");//先打印pHead
	ListNode* cur = pHead->next;
	while (cur != pHead)
	{
		printf("%d<=>", cur->data);
		cur = cur->next;
	}
	printf("pHead");//因为最后也是指向pHead
}

 

没有节点情况打印如下: 

6.双向链表尾插 

 

// 双向链表尾插
void ListPushBack(ListNode* pHead, LTDataType x)
{
	assert(pHead);
	
	//找尾节点,保存原来的尾
	//尾节点就是pHead->prev
	ListNode* tail = pHead->prev;
	//开辟新节点
	ListNode* newnode = BuyNode(x);
	//尾插
	pHead->prev = newnode;
	newnode->next = pHead;
	newnode->prev = tail;
	tail->next = newnode;

}

 

结果如下:

 

7.双向链表尾删

// 双向链表尾删
void ListPopBack(ListNode* pHead)
{
	assert(pHead);
	//没有节点不能尾删,头节点pHead不算
	if (pHead->next == pHead)
	{
		printf("没有添加节点\n");
		return;
	}
	//找尾节点,以及尾节点的前一个节点
	ListNode* tail = pHead->prev;
	ListNode* tailprev = tail->prev;
	//尾删
	tailprev->next = pHead;
	pHead->prev = tailprev;
	free(tail);//释放内存空间
}

 结果如下:

8.双向链表头插 

// 双向链表头插
void ListPushFront(ListNode* pHead, LTDataType x)
{
	assert(pHead);
	//找头以外的第一个节点
	ListNode* headnext = pHead->next;
	//创建新节点
	ListNode* newnode = BuyNode(x);
	//头插
	pHead->next = newnode;
	newnode->next = headnext;
	newnode->prev = pHead;
	headnext->prev = newnode;
}

 

结果如下:

9.双向链表头删 

 

// 双向链表头删
void ListPopFront(ListNode* pHead)
{
	assert(pHead);
	//判断有没有节点,头节点pHead除外
	if (pHead->next == pHead)
	{
		printf("没有添加节点\n");
		return;
	}
	//有节点
	//找头节点以及头节点的下一个节点
	ListNode* head = pHead->next;
	ListNode* headnext = head->next;
	//头删
	pHead->next = headnext;
	headnext->prev = pHead;
	free(head);//释放内存空间
}

 

 结果如下:

 

10.双向链表查找

// 双向链表查找
ListNode* ListFind(ListNode* pHead, LTDataType x)
{
	assert(pHead);
	//判断有无节点
	if (pHead->next == pHead)
	{
		printf("没有添加节点\n");
		return;
	}
	ListNode* cur = pHead->next;
	//遍历查找
	while (cur)
	{
		if (cur->data == x)
		{
			return cur;//找到返回地址
		}
		cur = cur->next;
	}
}

结果如下:

11.双向链表在pos的前面进行插入 

在pos位置前面插入原理和头插尾插相似

// 双向链表在pos的前面进行插入
void ListInsert(ListNode* pos, LTDataType x)
{
	assert(pos);
	//找到pos前一个节点
	ListNode* posprev = pos->prev;
	//创建新节点
	ListNode* newnode = BuyNode(x);
	//在pos前插入
	posprev->next = newnode;
	newnode->next = pos;
	newnode->prev = posprev;
	pos->prev = newnode;
	
}

结果如下:

 

12.双向链表删除pos位置的节点 

在pos位置删除原理和头删尾删相似

// 双向链表删除pos位置的节点
void ListErase(ListNode* pos)
{
	assert(pos);
	//找到pos前一个节点
	ListNode* posprev = pos->prev;
	//找打pos后一个节点
	ListNode* posnext = pos->next;
	//删除pos位置节点
	posprev->next = posnext;
	posnext->prev = posprev;
	free(pos);//释放内存空间

}

结果如下:

三、💫💫拓展

思考:在pos之前插入与头插尾插是否有关?

           在pos位置删除与头删尾删是否相似?

 

我们发现pos位置前插入函数代码似乎可以复用在头插尾插;

pos位置删除函数代码似乎可以复用在头删尾删;

下面我们一起来实现

1.尾插头插 

//尾插
void ListPushBack(ListNode* pHead, LTDataType x)
{
	assert(pHead);
	
	//找尾节点,保存原来的尾
	//尾节点就是pHead->prev
	//ListNode* tail = pHead->prev;
	开辟新节点
	//ListNode* newnode = BuyNode(x);
	尾插
	//pHead->prev = newnode;
	//newnode->next = pHead;
	//newnode->prev = tail;
	//tail->next = newnode;

	ListInsert(pHead, x);

}

//头插
void ListPushFront(ListNode* pHead, LTDataType x)
{
	assert(pHead);
	//找头以外的第一个节点
	//ListNode* headnext = pHead->next;
	创建新节点
	//ListNode* newnode = BuyNode(x);
	头插
	//pHead->next = newnode;
	//newnode->next = headnext;
	//newnode->prev = pHead;
	//headnext->prev = newnode;

	ListInsert(pHead->next, x);

}

2.尾删,头删

 

// 双向链表尾删
void ListPopBack(ListNode* pHead)
{
	assert(pHead);
	//没有节点不能尾删,头节点pHead不算
	if (pHead->next == pHead)
	{
		printf("没有添加节点\n");
		return;
	}
	找尾节点,以及尾节点的前一个节点
	//ListNode* tail = pHead->prev;
	//ListNode* tailprev = tail->prev;
	尾删
	//tailprev->next = pHead;
	//pHead->prev = tailprev;
	//free(tail);//释放内存空间

	ListErase(pHead->prev);
}




// 双向链表头删
void ListPopFront(ListNode* pHead)
{
	assert(pHead);
	//判断有没有节点,头节点pHead除外
	if (pHead->next == pHead)
	{
		printf("没有添加节点\n");
		return;
	}
	有节点
	找头节点以及头节点的下一个节点
	//ListNode* head = pHead->next;
	//ListNode* headnext = head->next;
	头删
	//pHead->next = headnext;
	//headnext->prev = pHead;
	//free(head);//释放内存空间

	ListErase(pHead->next);
}

 

 运行结果依然不受影响:

 

四、🎉🎉结言 

        我们通过上面的学习发现,相似的代码的重复利用可以大大减少我们写代码的时间与精力,提高我们工作学习的效率;双向链表尽管结构较单链表复杂,但其实现却比单链表简单得多,相信大家对此都深有体会,此外数据结构的题目我们可以通过画图来很好的获得思路与接替步骤,以上就是带头双向循环链表的相关知识啦~完结撒花~🎉🎉🌹🌹🌹

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/416943.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

为什么推荐使用ref而不是reactive

为什么推荐使用ref而不是reactive 局限性问题&#xff1a; reactive本身存在一些局限性&#xff0c;可能会在开发过程中引发一些问题。这需要额外的注意力和处理&#xff0c;否则可能对开发造成麻烦。数据类型限制&#xff1a; reactive声明的数据类型仅限于对象&#xff0c;而…

RK3568 android11 调试陀螺仪模块 MPU6500

一&#xff0c;MPU6500功能介绍 1.简介 MPU6500是一款由TDK生产的运动/惯性传感器&#xff0c;属于惯性测量设备&#xff08;IMU&#xff09;的一种。MPU6500集成了3轴加速度计、3轴陀螺仪和一个板载数字运动处理器&#xff08;DMP&#xff09;&#xff0c;能够提供6轴的运动…

【毛毛讲书】【端粒:年轻、健康、长寿的新科学】是什么决定了我们的寿命?

重磅推荐专栏&#xff1a; 《大模型AIGC》 《课程大纲》 《知识星球》 本专栏致力于探索和讨论当今最前沿的技术趋势和应用领域&#xff0c;包括但不限于ChatGPT和Stable Diffusion等。我们将深入研究大型模型的开发和应用&#xff0c;以及与之相关的人工智能生成内容&#xff…

es获取某个索引下字段的分词结果

//查看某个索引下字段的分词结果 GET /haha/_analyze { "field": "title", "text":"哈哈。" }

云尚办公-0.1.0

二、用户管理接口 1. 建表 角色与用户是多对多的关系&#xff0c;所以除了角色表和用户表外&#xff0c;还需要第三张表表示这两者间的对应关系。关系表中的用户id和角色id分别以对应表中的id作为外键。 CREATE TABLE sys_user (id BIGINT(20) NOT NULL AUTO_INCREMENT COM…

Vue3切换路由白屏刷新后才显示页面内容

1.首先检查页面路由以及页面路径配置是否配置错误。 在router-view 中给路由添加key标识。 &#xff01;&#xff01;注意&#xff1a;有使用layout封装布局的&#xff0c;是在layout下的主页面中的 router-view 添加标识&#xff0c;不是在src根目录下main.vue中修改&#xf…

[云原生] K8s之pod进阶

一、pod的状态说明 &#xff08;1&#xff09;Pod 一直处于Pending状态 Pending状态意味着Pod的YAML文件已经提交给Kubernetes&#xff0c;API对象已经被创建并保存在Etcd当中。但是&#xff0c;这个Pod里有些容器因为某种原因而不能被顺利创建。比如&#xff0c;调度不成功(…

【rust】11、所有权

文章目录 一、背景二、Stack 和 Heap2.1 Stack2.2 Heap2.3 性能区别2.4 所有权和堆栈 三、所有权原则3.1 变量作用域3.2 String 类型示例 四、变量绑定背后的数据交互4.1 所有权转移4.1.1 基本类型: 拷贝, 不转移所有权4.1.2 分配在 Heap 的类型: 转移所有权 4.2 Clone(深拷贝)…

linux系统Jenkins的安装

Jenkins安装 安装上传安装包解压包首次登录要去服务器查看密码&#xff0c;更改密码选择需要安装的插件设置Admin用户和密码安装完成 安装 上传安装包 上传 jdk17 tomcat jenkins.war的安装包 . 上传 tomcat安装包解压包 解压jdk tar xf jdk-11.0.18_linux-x64_bin.tar.gz解…

甲级!亚信安全再次荣膺CNCERT国家级网络安全应急服务支撑单位称号

再获认可 近日&#xff0c;国家计算机网络应急技术处理协调中心&#xff08;CNCERT&#xff09;正式公布第十届CNCERT网络安全应急服务支撑单位遴选结果&#xff0c;亚信安全凭借创新技术实力&#xff0c;以及重大突发网络安全事件的应对能力&#xff0c;再次荣获CNCERT甲级网…

AI新秀Mistral:“Open AI“ 新时代

最近互联网出现不少类似“下一代openai”、“GPT-4最强竞品”、“法国AI独角兽”、“欧洲的OpenAI”、“微软新宠儿”.... 的文章&#xff0c;都会附带一张图片&#xff0c;就是下面这张&#xff1a; 那么到底发生了什么&#xff0c;出来个什么东西呢&#xff1f;就是本文的主…

深入英伟达盈利中心,反思一个正被“忽视”的Web3.0赛道

出品&#xff5c;欧科云链研究院 作者&#xff5c;Hedy Bi 最近&#xff0c;英伟达&#xff08;Nvidia&#xff09;发布了2023年第四季度财报&#xff0c;超出了华尔街预期&#xff0c;并在美国股市的延时交易中表现出色。欧科云链研究院通过分析英伟达的财报&#xff0c;我们…

前端架构: 脚手架包管理工具之lerna的全流程开发教程

Lerna 1 &#xff09;文档 Lerna 文档 https://www.npmjs.com/package/lernahttps://lerna.js.org [请直达这个链接] 使用 Lerna 帮助我们做包管理&#xff0c;并不复杂&#xff0c;中间常用的命令并不是很多这里是命令直达&#xff1a;https://lerna.js.org/docs/api-referen…

Unity 佳能SDK 及数据获取

1. 填写信息跟官方申请SDK,大概1-2个工作日会邮件回复你 佳能(中国)- 佳定制(佳能影像产品),SDK,EDSDK,CCAPI,软件开发包下载 2. 将SDK这两个文件放到 Unity Plugins文件夹 3. 把CameraControl 下面只要是绿色的 .cs 文件都复制到Unity 中

新闻网站封锁AI爬虫 AI与新闻媒体博弈继续

随着ChatGPT等新兴AI模型的兴起&#xff0c;它们所依赖的网络爬虫正面临来自全球主流新闻网站的大规模封锁。Richard Fletcher博士团队对十个国家主流新闻网站的统计发现&#xff0c;到2023年底&#xff0c;48%的网站屏蔽了OpenAI的爬虫&#xff0c;24%屏蔽了Google的爬虫。那么…

浅析前端的堆栈原理以及深浅拷贝原理

浅析前端的堆栈原理以及深浅拷贝原理 首先来看一个案例 const obj {name:hzw,age:18 } let objName2 obj objName2.age 12 console.log(obj,objName2) // {name: hzw, age: 12} {name: hzw, age: 12}这里是不是很奇怪&#xff0c;为什么&#xff0c;为什么我改变objName2的…

type may not be empty [type-empty]

Git提交失败原因分析 原因是使用了规范commit信息的工具&#xff0c;你的提交信息不符合规范&#xff0c;所以被拒绝了 commit规范工具 commitlinthusky 我这个项目使用husky&#xff0c;提交规范比较严格。 解决方式一&#xff1a; 修改提交信息&#xff0c; 使其符合规范…

代码里没有报错,但是java编译报错找不到符号

问题分析&#xff1a; 最近在尝试maven编译&#xff0c;所以不小心点了mvn clean的命令&#xff0c;将之前编译的工程清除了&#xff0c;导致后边再编译项目上的时候就报了一堆错误。代码没问题&#xff0c;但编译不通过&#xff0c;报找不到符号的错误&#xff0c;搜了下这样解…

Windows安装VNC连接工具并结合cpolar实现远程内网Ubuntu系统桌面

文章目录 前言1. ubuntu安装VNC2. 设置vnc开机启动3. windows 安装VNC viewer连接工具4. 内网穿透4.1 安装cpolar【支持使用一键脚本命令安装】4.2 创建隧道映射4.3 测试公网远程访问 5. 配置固定TCP地址5.1 保留一个固定的公网TCP端口地址5.2 配置固定公网TCP端口地址5.3 测试…

Linux测试端口开放

Linux测试端口开放 Linux测试端口是否开放有多种命令&#xff0c;如nc、telnet、ssh、curl、wget nc nc&#xff08;netcat&#xff09;可用于创建 TCP 或 UDP 连接、扫描端口、传输文件等 扫描指定端口&#xff1a; nc -zv ip port-z 使用0输入/输出模式&#xff0c;只在…