C++惯用法之空基类优化

相关系列文章

C++惯用法之Pimpl

C++惯用法之CRTP(奇异递归模板模式)

C++之std::tuple(二) : 揭秘底层实现原理

目录

1.空类

2.空基类优化

3.内存布局原则

4.实例分析

5.总结


1.空类

        C++ 中每个对象的实例都可以通过取地址运算符获取其在内存布局中的开始位置,因此每个类对象至少需要占用一个字节的空间。空类是指不包含非静态数据成员的类,但是可以包含成员函数及静态成员。C++ 中空类的大小是 1 字节。

class CEmpty1
{

};
class CEmpty2
{
    static int i;
};

class CEmpty3
{
public:
    void func1() {};
    void func2() {};
};

int main()
{
    cout << "CEmpty1大小:" << sizeof(CEmpty1) << endl; //输出: 1
    cout << "CEmpty2大小:" << sizeof(CEmpty2) << endl; //输出: 1
    cout << "CEmpty3大小:" << sizeof(CEmpty3) << endl; //输出: 1

    return 0;
}

结果是1,它是空的怎么不是0呢?

因为空类同样可以被实例化,每个实例在内存中都有一个独一无二的地址,为了达到这个目的,编译器往往会给一个空类隐含的加一个字节,这样空类在实例化后在内存得到了独一无二的地址.所以上述大小为1。

2.空基类优化

注:空基类优化可简称为EBO (empty base optimization)或者 EBCO (empty base class optimization)

在没有歧义的情况下,C++ 允许空基类的子对象大小为 0。

一般来讲,对一个既有类进行扩展时,除非有更好的理由采用继承(有虚函数需要重新实现、有受保护的私有成员需要访问,否则采用组合的方式进行扩展。

现对比一下两种模式,第一种,类中把空类做为成员变量使用,然后通过这个来获得被包含类的功能,如:

class CEmpty {};
class CDerived1 {
	CEmpty m_base;
	int m_i;
	//other function...
};

另一种直接采用继承的方式来获得基类的成员函数及其他功能等等。如:

class CDerived2 : public CEmpty {
	int m_i;
	//other function...
};

接下来做个测试:

std::cout<<sizeof(CDerived1)<<std::endl; //输出: 8
std::cout<<sizeof(CDerived2)<<std::endl; //输出:4

第一种,本来只占1字节,会因为字节对齐,进行扩充到4的倍数,最后就是8字节。
对比这两个发现,第二种通过继承方式来获得基类的功能,并没有产生额外大小的优化称之为EBO(空基类优化)。

3.内存布局原则

        C++的设计者不允许类的大小为0,其原因有很多,比如由它们构成的数组,其大小必然也是0,这会导致指针运算中普遍使用的性质失效。比如,假设类型ZeroSizedT的大小为0,则下面的操作会出现错误:

ZeroSizedT  z[10];
auto v =  &z[9]  - &z[2];  // 计算指针/地址之间的距离

        正常情况下,上例中的差值是通过将两个地址之间的字节数除以指针指向的类型的大小得出来的,但是它们的大小是0时,该关系就显然就不成立了。

        尽管C++中没有大小为0的类型,但是C++规定,当空类作为基类时,不需要为其分配空间,前提是这样做不会导致它被分配到与其他对象或者同类型的子对象相同的地址上。看个例子:

#include <iostream>
class EmptyClass{
    using Bool = bool; //类型别名成员不会让一个类成为非空类
};
class EmptyFoo : public EmptyClass{
};
class EmptyThree : public EmptyFoo{
};
int main(){
    std::cout << sizeof(EmptyClass) << std::endl; //输出:1
    std::cout << sizeof(EmptyFoo) << std::endl; //输出:1
    std::cout << sizeof(EmptyThree ) << std::endl; //输出:1
}

如果编译器支持空基类优化,上面程序的所有输出结果相同,但是均不为0。也就是说,在类EmptyFoo 中的类 EmptyClass没有分配空间 。 如下图:b3dc5c1c04f54e1b917e3b7ee74f8c0c.png

如果不支持空基类优化,上面程序的输出结果不同。布局如下图:460774284a654c6395d2441d2d246b11.png

再看个例子:

#include <iostream>
class EmptyClass{
    using Bool = bool;  //类型别名成员不会让一个类成为非空类
};
class EmptyFoo : public EmptyClass{
};
class NoEmpty :public EmptyClass,  public EmptyFoo{
};
int main(){
    std::cout << sizeof(EmptyClass) << std::endl; //输出:1
    std::cout << sizeof(EmptyFoo) << std::endl; //输出:1
    std::cout << sizeof(NoEmpty) << std::endl; //输出:2
}

        NoEmpty 为什么不为空类呢?这是因为NoEmpty 的基类EmptyClass和EmptyFoo 不能分配到同一地址空间,否则EmptyFoo 的基类EmptyClass和NoEmpty 的EmptyClass会撞到同一地址空间上。换句话说,两个相同类型的子对象偏移量相同,这是C++布局规则不允许的

b8754183586d4bd7bcd6955677a1db2d.png

        对空基类优化进行限制的根据原因在于:我们需要能比较两个指针是否指向同一对象。由于指针几乎总是用地址内部表示,所以我们必须保证两个不同的地址(即两个不同的指针)对应两个不同的对象。

        这个限制也许看起来不是非常重要。然而,在实践中经常会遇到相关问题,因为许多类往往继承自某些空类的一个小集合,而这些空类又往往定义了一些共同的类型别名。当这样的类的两个子对象被用在同一个完整对象中时,优化就会被阻止。

        就算有此限制,EBCO仍是模板库的一个重要优化,因为有些技巧要依赖于某些基类的引入,而引入这些基类只是为了引入新的类型别名或者在不增加新数据的情况提供额外功能。

4.实例分析

std::tuple实际也应用了空基类优化,如:

struct Base1 {}; // 空类
struct Base2 {}; // 空类
struct Base3 {}; // 空类

int main()
{
    std::cout << sizeof(std::tuple<Base1, Base2, Base3>) << "," 
              << sizeof(std::tuple<Base1, Base2, Base3, int>);
}
// 输出为1,4

本节介绍std::tuple中如何应用EBO,本文以mingw平台上的实现为例进行讲解。

tuple的模板参数可以支持接收任意类型,熟悉可变模板参数的同学可以快速实现如下代码:

template<typename ...Args>
struct Tuple;
template<>
struct Tuple<> {
};
    
template<typename Head, typename ...Tail>
struct Tuple<Head, Tail...> {
    Head h;
    Tuple<Tail...> t;
};

此时模板参数类型为空类时存在内存浪费;下一步应用EBO优化得到:

template<typename ...Args>
struct Tuple;
template<>
struct Tuple<> {
};
    
template<typename Head, typename ...Tail>
struct Tuple<Head, Tail...> : private Head, Tuple<Tail...> {
};

但Head可能为int或者final类等不可继承类型,因此引入TupleEle:

template<typename T, bool = std::is_class<T>::value && !std::is_final<T>::value>
struct TupleEle;

template<typename T>
struct TupleEle <T, false> {
    T value;
    T& Get() { return value; }
};

template<typename T>
struct TupleEle <T, true> : private T {
    T& Get() { return *this; }
};

template<typename ...Args>
struct Tuple;

template<>
struct Tuple<> {
};

template<typename Head, typename ...Tail>
struct Tuple<Head, Tail...>: private TupleEle<Head>, private Tuple<Tail...> {
};

此时如果送入重复类型,则重复继承了TupleEle<xxx>,导致 派生类转换到基类存在歧义,因此进一步修改为:

template<size_t index, typename T, bool = std::is_class<T>::value && !std::is_final<T>::value>
struct TupleEle;

template<size_t index, typename T>
struct TupleEle <index, T, false> {
    T value;
    T& Get() { return value; }
};

template<size_t index, typename T>
struct TupleEle <index, T, true> : private T {
    T& Get() { return *this; }
};

template<typename ...Args>
struct Tuple;
template<>
struct Tuple<> {
};

template<typename Head, typename ...Tail>
struct Tuple<Head, Tail...>: private TupleEle<sizeof...(Tail), Head>, private Tuple<Tail...> {
};

得益于EBO继承关系,在实现Get<xxx>(tuple)利用模板参数推导,可以在常量时间内获取对应元素,补充Get之后的完整代码如下:

template<size_t index, typename T, bool = std::is_class<T>::value && !std::is_final<T>::value>
struct TupleEle;

template<size_t index, typename T>
struct TupleEle <index, T, false> {
    template<typename U>
    TupleEle(U&& u) : value(std::forward<U>(u)) {};
    T& Get() { return value; }
private:
    T value;
};

template<size_t index, typename T>
struct TupleEle <index, T, true> : private T {
    template<typename U>
    TupleEle(U&& u) : T(std::forward<U>(u)) {};
    T& Get() { return *this; }
};

template<typename ...Args>
struct Tuple;
template<>
struct Tuple<> {
};

template<typename Head, typename ...Tail>
struct Tuple<Head, Tail...>: TupleEle<sizeof...(Tail), Head>, private Tuple<Tail...> {
    template<typename H, typename ...Rest>
    Tuple(H&& h, Rest&&...rest) : TupleEle<sizeof...(Tail), Head>(std::forward<H>(h)),
                                  Tuple<Tail...>(std::forward<Rest>(rest)...){}
    template<size_t index, typename ...Ts>
    friend decltype(auto) Get(Tuple<Ts...>& t);
};

template<size_t index, typename T>
T& GetIndex(TupleEle<index, T>& te) { return te.Get(); }

template<size_t index, typename ...Ts>
decltype(auto) Get(Tuple<Ts...>& t) { return GetIndex<sizeof...(Ts) - index -1>(t); }

在GetIndex调用时通过模板参数推导,index确定,推导出对应T;

std::tuple在vs2019平台上的实现跟mingw上的实现还是有些差异,具体的差异可以查看我的另外一篇博客:

C++之std::tuple(二) : 揭秘底层实现原理-CSDN博客

5.总结

        为了减少空基类对象的内存占用,C++编译器引入了空基类优化。当一个类作为基类被继承时,如果这个基类是空的,编译器会将派生类对象的地址指向基类对象的地址,从而实现对基类对象的共享。这样一来,派生类对象就可以共享基类对象的内存空间,避免了额外的内存开销。

        空基类优化可以提高程序的性能和内存利用率,特别是在涉及大量继承关系和多重继承的情况下。通过减少空基类对象的内存占用,可以降低内存开销,并提高程序的运行效率。

        需要注意的是,不是所有的编译器都支持空基类优化技术。因此,在使用该技术时,需要检
查目标编译器是否支持该优化,并确保代码符合优化的要求。

参考:空基类优化 - cppreference.com

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/416712.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【亚马逊云科技】通过Amazon CloudFront(CDN)快速访问资源

文章目录 前言一、应用场景二、【亚马逊云科技】CloudFront&#xff08;CDN&#xff09;的优势三、入门使用总结 前言 前面有篇文章我们介绍了亚马逊云科技的云存储服务。云存储服务主要用于托管资源&#xff0c;而本篇文章要介绍的CDN则是一种对托管资源的快速访问服务&#…

18个惊艳的可视化大屏(第九辑):智慧旅游和智慧景区

本次带来18个页面是智慧旅游和智慧景区的作品分享&#xff0c;希望大家能从作品中寻找到灵感 &#xff0c;创造更新的应用。 数字孪生技术可以为智慧旅游/智慧景区提供数字化模型和数据支持&#xff0c;帮助景区管理者更好地了解景区的运营情况和游客需求&#xff0c;从而提供更…

为什么企业需要使用云电子邮箱?

作为一家机构的负责人&#xff0c;您比大多数人都清楚&#xff0c;您的工作日不会在下午5点就结束。很可能&#xff0c;当您的员工已经打卡下班回家很久之后&#xff0c;您还在以这样或那样的方式继续工作。作为一名企业主&#xff0c;埋头苦干对您来说并不是什么新鲜事&#x…

分巧克力(蓝桥杯)

文章目录 分巧克力题目描述二分算法 分巧克力 题目描述 儿童节那天有 K位小朋友到小明家做客。 小明拿出了珍藏的巧克力招待小朋友们。 小明一共有 N块巧克力&#xff0c;其中第 i 块是 HiWi 的方格组成的长方形。 为了公平起见&#xff0c;小明需要从这 N 块巧克力中切出 K …

sawForceDimensionSDK安装,sigma7+ros

force dimension的sdk中没有关于ros&#xff0c;借助开源的sawForceDimensionSDK实现对于数据的封装和可视化&#xff0c;方便后续使用 链接&#xff1a; GitHub - jhu-saw/sawForceDimensionSDK 具体步骤&#xff1a; 安装qt和ros&#xff0c;官网下载Force Dimension SDK …

微信小程序 uniapp+vue实习助学岗位系统springboot/php/python/nodejs

&#xff08;一&#xff09;研究目标&#xff1a; 对于本微信小程序实习系统的设计来讲&#xff0c;主要是采用了java语言和mysql数据库来完成对系统的设计&#xff0c;根据某高校的实习系统&#xff0c;提出解决问题的一个可行性方法&#xff0c;可以在手机端就能完成我们的工…

对话式人工智能:改变电子学习的格局

革命性教育体验&#xff1a;对话式AI导师如何改变学习方式 对话式人工智能和电子学习的融合不仅仅是技术进步&#xff0c;更是技术进步。 这是教育范式的一场革命。 这种整合正在重塑我们的学习方式&#xff0c;打破传统障碍&#xff0c;创造更具互动性、个性化且易于访问的学习…

科普SCADA系统

什么是SCADA系统&#xff1f; 在20世纪中期&#xff0c;工业设施依靠人员对设备进行物理控制和监控。然而&#xff0c;随着行业规模的扩大&#xff0c;设备控制的创新出现了。20世纪70年代初&#xff0c;监控与数据采集&#xff08;SCADA&#xff09;系统被发明。该系统允许自…

探索IP地址定位工具:解读IP数据云的功能与优势

在当今数字化时代&#xff0c;IP地址定位工具成为了许多领域中不可或缺的技术支持&#xff0c;为网络安全、地理定位服务和个性化推荐等提供了重要数据支持。其中&#xff0c;IP数据云作为一种领先的IP地址定位工具&#xff0c;具有一系列功能和优势&#xff0c;本文将对其进行…

Jenkins设置root权限(13)

1.将 Jenkins 账号加入到 root 组中。 gpasswd -a jenkins root2.修改/etc/sysconfig/jenkins文件&#xff0c;添加如下配置。 JENKINS_USER"root" JENKINS_GROUP"root"3.重启 Jenkins service Jenkins restart4.验证 groups jenkins jenkins : jenkin…

Chapter 8 - 19. Congestion Management in TCP Storage Networks

Queue Depth Monitoring and Microburst Detection Queue depth monitoring and microburst detection capture the events that may cause congestion at a lower granularity but are unnoticed by other means due to long polling intervals. 队列深度监控和微爆检测可捕捉…

【Unity】在Unity中导出WebGL并读取Excel数据的实现方法

在游戏开发中&#xff0c;数据的处理和导出是至关重要的环节之一。Unity作为一款强大的游戏开发引擎&#xff0c;提供了丰富的工具和功能来处理和导出数据&#xff0c;包括将游戏导出为WebGL应用&#xff0c;并读取外部数据文件&#xff0c;比如Excel表格。本文将介绍如何在Uni…

Kubernetes工作负载重点总结

文章目录 1、容器2、Pod3、工作负载4、Deployment5、StatefulSet5、DaemonSet6、Job7、CronJob 1、容器 容器&#xff1a; 容器是容器镜像的运行态&#xff0c;通过基于标准的容器运行时运行&#xff0c;将应用程序从底层的主机设施中解耦。 容器镜像&#xff1a; 容器镜像是一…

传感器为智能化基础,L3车规落地打开激光雷达新空间(上)

1 智能化重新定义汽车&#xff0c;开启“新赛道” 1.1 新技术重新定义汽车&#xff0c;开启智能汽车时代 1.2 从整车看来&#xff0c;智能化产品带来汽车定位差异  颠覆性体验感打通消费者消费升级感受空间&#xff0c;用户对智能化功能需求度变高。未来车只分为“能自动驾驶…

SpringBoot源码解读与原理分析(三十三)SpringBoot整合JDBC(二)声明式事务的生效原理和控制流程

文章目录 前言10.3 声明式事务的生效原理10.3.1 TransactionAutoConfiguration10.3.2 TransactionManagementConfigurationSelector10.3.3 AutoProxyRegistrar10.3.4 InfrastructureAdvisorAutoProxyCreator10.3.5 ProxyTransactionManagementConfiguration10.3.5.1 Transactio…

第七十天 APP攻防-微信小程序解包反编译数据抓包APK信息资源提取

第70天 APP攻防-微信小程序&解包反编译&数据抓包&APK信息资源提取 知识点&#xff1a; 0、APK信息资源提取 1、微信小程序致据抓包 2、做信小程序解包反编译 1、信息收集应用8资产提取&权限等 2、漏润发现-反编泽&脱壳&代码审计 3、安全评估组件8散密…

首个基于地面纹理的单目SLAM,复杂光照环境中也能精准定位

论文题目&#xff1a; Monocular Simultaneous Localization and Mapping using Ground Textures 论文作者&#xff1a; Kyle M. Hart&#xff0c; Brendan Englot, Ryan P. O’Shea, John D. Kelly, David Martinez 导读&#xff1a; 本文是发布在ICRA 2023的论文&#xff0c…

【EFK】基于K8S构建EFK+logstash+kafka日志平台

基于K8S构建EFKlogstashkafka日志平台 一、常见日志收集方案1.1、EFK1.2、ELK Stack1.3、ELK filbeat1.4、其他方案 二、EFK组件介绍2.1、Elasticsearch组件2.2、Filebeat组件【1】 Filebeat和beat关系【2】Filebeat是什么【3】Filebeat工作原理【4】传输方案 2.3、Logstash组件…

Carla自动驾驶仿真八:两种查找CARLA地图坐标点的方法

文章目录 前言一、通过Spectator获取坐标二、通过道路ID获取坐标总结 前言 CARLA没有直接的方法给使用者查找地图坐标点来生成车辆&#xff0c;这里推荐两种实用的方法在特定的地方生成车辆。 一、通过Spectator获取坐标 1、Spectator&#xff08;观察者&#xff09;&#xf…

实战Kafka的部署

目录 一、环境准备 二、安装配置jdk8 &#xff08;1&#xff09;Kafka、Zookeeper&#xff08;简称&#xff1a;ZK&#xff09;运行依赖jdk8 三、安装配置ZK &#xff08;1&#xff09;安装 &#xff08;2&#xff09;配置 四、配置Kafka &#xff08;1&#xff09;配置…