Unity中URP实现水体(水的焦散)

文章目录

  • 前言
  • 一、原理
    • 1、 通过深度图,得到 对应像素 在 世界空间下的Z值
    • 2、得到模型顶点在 观察空间 下的坐标
    • 3、由以上两点得到 深度图像素 对应的 xyz 值
    • 4、最后,转化到 模型本地空间下,用其对焦散纹理采样
  • 二、实现
    • 1、获取深度图
    • 2、在顶点着色器中,转化 得到顶点在 观察空间下的坐标值
    • 3、使用公式计算得到,深度图 z 对应的 xy 值
    • 4、转化到模型的本地空间下
    • 5、对定义和申明焦散纹理,并对其纹理采样
    • 6、与之前文章的结果相加输出得出最终效果
  • 三、最终代码


前言

在上篇文章中,我们实现了水面的反射。

  • Unity中URP下实现水体(水面反射)

在这篇文章中,我们来实现一下水的焦散效果。


一、原理

和深度贴花使用的方法是一致的。

  • Unity中URP下实现深度贴花

主要步骤:

1、 通过深度图,得到 对应像素 在 世界空间下的Z值

2、得到模型顶点在 观察空间 下的坐标

3、由以上两点得到 深度图像素 对应的 xyz 值

4、最后,转化到 模型本地空间下,用其对焦散纹理采样


二、实现

1、获取深度图

(因为要考虑之前的水下扭曲效果,需要把深度图扭曲一下)

  • 获取 屏幕空间下的UV坐标

float2 screenUV = i.positionCS.xy / _ScreenParams.xy;

  • 使用_Distort控制得到线性插值在 screenUV 和 normalTex之间的扭曲UV
    (在之前的文章中,有完整过程)

float2 distortUV = lerp(screenUV,normalTex.xy,_Distort);

  • 使用该UV采样得到,水下扭曲后的深度纹理

half4 depthDistortTex = SAMPLE_TEXTURE2D(_CameraDepthTexture,sampler_CameraDepthTexture,distortUV);

  • 使深度图 转化到 观察空间下

half depthDistortScene = LinearEyeDepth(depthDistortTex.x,_ZBufferParams);

2、在顶点着色器中,转化 得到顶点在 观察空间下的坐标值

o.positionWS = TransformObjectToWorld(v.positionOS);
o.positionVS = TransformWorldToView(o.positionWS);

3、使用公式计算得到,深度图 z 对应的 xy 值

公式在贴花的那篇文章有推导

  • W x = P x W z − P z W_x = \frac{P_xW_z}{-P_z} Wx=PzPxWz
  • W y = P y W z − P z W_y = \frac{P_yW_z}{-P_z} Wy=PzPyWz

float4 depthVS = 1;
depthVS.xy = i.positionVS.xy * depthDistortScene / -i.positionVS.z;
depthVS.z = depthDistortScene;

4、转化到模型的本地空间下

float4 depthWS = mul(unity_CameraToWorld,depthVS);
float4 depthOS = mul(unity_WorldToObject,depthWS);

5、对定义和申明焦散纹理,并对其纹理采样

  • 使用该本地空间坐标,计算得出两组方向不同的流动uv值

float2 uv1 = depthOS.xz * _CausticsTex_ST.xy + depthWS.y *0.1+ _Time.y * _WaterSpeed;
float2 uv2 = depthOS.xz * _CausticsTex_ST.xy + depthWS.y *0.1+ _Time.y * _WaterSpeed * float2(-1.1,1.3);

  • 使用这两组 uv 分别进行 焦散纹理 的 纹理采样。

half4 causticsTex1 = SAMPLE_TEXTURE2D(_CausticsTex,sampler_CausticsTex,uv1);
half4 causticsTex2 = SAMPLE_TEXTURE2D(_CausticsTex,sampler_CausticsTex,uv2);

  • 使用 min 函数制造随机混乱的效果

half4 causticsTex = min(causticsTex1,causticsTex2);

请添加图片描述

6、与之前文章的结果相加输出得出最终效果

half4 col = (foamColor + waterColor) * opaqueTex + (specular * reflection) + causticsTex;

请添加图片描述
请添加图片描述


三、最终代码

//水的深度
Shader "MyShader/URP/P4_8"
{
    Properties 
    {
        [Header(Base)]
        _WaterColor1("WaterColor1",Color) = (1,1,1,1)
        _WaterColor2("WaterColor2",Color) = (1,1,1,1)
        
        [PowerSlider(3)]_WaterSpeed("WaterSpeed",Range(0,1)) = 0.1
        
        [Header(Foam)]
        _FoamTex("FoamTex",2D) = "white"{} 
        _FoamColor("FoamColor",Color) = (1,1,1,1)
        _FoamRange("FoamRange",Range(0,5)) = 1
        _FoamNoise("FoamNoise",Range(0,3)) = 1
        
        [Header(Distort)]
        _NormalTex("NormalTex",2D) = "white"{}
        [PowerSlider(3)]_Distort("Distort",Range(0,0.3)) = 0
        
        [Header(Specular)]
        _SpecularColor("Specular Color",Color) = (1,1,1,1)
        [PowerSlider(3)]_SpecularIntensity("Specular Intensity",Range(0,1)) = 0.6
        _Smoothness("Smoothness",Range(0,10)) = 10
        
        [Header(Reflection)]
        _ReflectionTex("ReflectionTex",Cube) = "white"{}
        [PowerSlider(3)]_NormalIntensity("NormalIntensity",Range(0,1)) = 0.5
        
        [Header(Caustics)]
        _CausticsTex("CausticsTex",2D) = "white"{}
        
    }
    
    SubShader
    {
        Tags
        {
            //告诉引擎,该Shader只用于 URP 渲染管线
            "RenderPipeline"="UniversalPipeline"
            //渲染类型
            "RenderType"="Transparent"
            //渲染队列
            "Queue"="Transparent"
        }
        //Blend SrcAlpha OneMinusSrcAlpha
        ZWrite Off
        Pass
        {
          
            HLSLPROGRAM
            #pragma vertex vert
            #pragma fragment frag
            // Pragmas
            #pragma target 2.0
            
            // Includes
            #include "Packages/com.unity.render-pipelines.core/ShaderLibrary/Color.hlsl"
            #include "Packages/com.unity.render-pipelines.universal/ShaderLibrary/Core.hlsl"
            #include "Packages/com.unity.render-pipelines.universal/ShaderLibrary/Input.hlsl"
            #include "Packages/com.unity.render-pipelines.universal/ShaderLibrary/Lighting.hlsl"

            CBUFFER_START(UnityPerMaterial)
            half4 _WaterColor1;
            half4 _WaterColor2;
            
            half _WaterSpeed;
            
            half4 _FoamColor;
            half _FoamRange;
            half _FoamNoise;
            half4 _FoamTex_ST;

            half _Distort;
            half4 _NormalTex_ST;

            half4 _SpecularColor;
            half _SpecularIntensity;
            half _Smoothness;

            half _NormalIntensity;

            half4 _CausticsTex_ST;
            CBUFFER_END

            
            TEXTURE2D(_CameraDepthTexture);SAMPLER(sampler_CameraDepthTexture);
            TEXTURE2D(_FoamTex);SAMPLER(sampler_FoamTex);
            TEXTURE2D(_CameraOpaqueTexture);SAMPLER(sampler_CameraOpaqueTexture);
            TEXTURE2D(_NormalTex);SAMPLER(sampler_NormalTex);
            TEXTURECUBE(_ReflectionTex);SAMPLER(sampler_ReflectionTex);
            TEXTURE2D(_CausticsTex);SAMPLER(sampler_CausticsTex);
            //struct appdata
            //顶点着色器的输入
            struct Attributes
            {
                float3 positionOS : POSITION;
                float2 uv : TEXCOORD0;
                half3 normalOS : NORMAL;
            };
            //struct v2f
            //片元着色器的输入
            struct Varyings
            {
                float4 positionCS : SV_POSITION;
                float2 uv : TEXCOORD0;//foamUV
                float4 screenPos : TEXCOORD1;
                float3 positionVS : TEXCOORD2;
                float3 positionWS : TEXCOORD3;
                float3 normalWS : TEXCOORD4;
                float4 normalUV : TEXCOORD5;
            };
            //v2f vert(Attributes v)
            //顶点着色器
            Varyings vert(Attributes v)
            {
                Varyings o = (Varyings)0;
                o.positionWS = TransformObjectToWorld(v.positionOS);
                o.positionVS = TransformWorldToView(o.positionWS);
                o.positionCS = TransformWViewToHClip(o.positionVS);
                
                o.screenPos = ComputeScreenPos(o.positionCS);
                //计算得到泡沫纹理采样需要的顶点世界空间下的坐标值的流动效果
                o.uv += o.positionWS.xz *_FoamTex_ST.xy + _Time.y * _WaterSpeed;
                //计算得到水下扭曲纹理的流动UV
                o.normalUV.xy = TRANSFORM_TEX(v.uv,_NormalTex) + _Time.y * _WaterSpeed;
                o.normalUV.zw = TRANSFORM_TEX(v.uv,_NormalTex) + _Time.y * _WaterSpeed * half2(-1.1,1.3);
                o.normalWS = TransformObjectToWorldNormal(v.normalOS);
                
                return o;
            }
            //fixed4 frag(v2f i) : SV_TARGET
            //片元着色器
            half4 frag(Varyings i) : SV_TARGET
            {
                //1、水的深度
                //获取屏幕空间下的 UV 坐标
                float2 screenUV = i.positionCS.xy / _ScreenParams.xy;
                half depthTex = SAMPLE_TEXTURE2D(_CameraDepthTexture,sampler_CameraDepthTexture,screenUV).x;
                //深度图转化到观察空间下
                float depthScene = LinearEyeDepth(depthTex,_ZBufferParams);
                //获取水面模型顶点在观察空间下的Z值(可以在顶点着色器中,对其直接进行转化得到顶点观察空间下的坐标)
                float4 depthWater = depthScene + i.positionVS.z;
                
                //2、水的颜色,线性插值得到水 和 接触物体的水的 颜色的过度
                half4 waterColor = lerp(_WaterColor1,_WaterColor2,depthWater);
                
                //3、水面泡沫
                //对泡沫纹理进行采样(这里使用顶点世界空间下的坐标进行纹理采样,防止水体缩放影响泡沫的平铺和重复方式)
                half4 foamTex = SAMPLE_TEXTURE2D(_FoamTex,sampler_FoamTex,i.uv.xy);
                
                foamTex = pow(abs(foamTex),_FoamNoise);
                
                //这里增加一个调整深度图范围的功能
                half4 foamRange = depthWater * _FoamRange;
                
                //使用泡沫纹理 和 泡沫范围 比较得到泡沫遮罩
                half4 foamMask = step(foamRange,foamTex);
                
                //给泡沫加上颜色
                half4 foamColor = foamMask * _FoamColor;
                
                //4、水下的扭曲
                half4 normalTex1 = SAMPLE_TEXTURE2D(_NormalTex,sampler_NormalTex,i.normalUV.xy);
                half4 normalTex2 = SAMPLE_TEXTURE2D(_NormalTex,sampler_NormalTex,i.normalUV.zw);
                half4 normalTex = normalTex1 * normalTex2;
                float2 distortUV = lerp(screenUV,normalTex.xy,_Distort);
                
                half4 depthDistortTex = SAMPLE_TEXTURE2D(_CameraDepthTexture,sampler_CameraDepthTexture,distortUV);
                half depthDistortScene = LinearEyeDepth(depthDistortTex.x,_ZBufferParams);
                half depthDistortWater = depthDistortScene + i.positionVS.z;
                float2 opaqueUV = distortUV;
                if(depthDistortWater<0) opaqueUV = screenUV;
                half4 opaqueTex = SAMPLE_TEXTURE2D(_CameraOpaqueTexture,sampler_CameraOpaqueTexture,opaqueUV);
                //5、水的高光
                //Specular = SpecularColor * Ks * pow(max(0,dot(N,H)), Shininess)
                Light light = GetMainLight();
                half3 L = light.direction;
                half3 V = normalize(_WorldSpaceCameraPos.xyz - i.positionWS.xyz);
                //修改法线实现,波光粼粼的效果
                half4 N = lerp(half4(i.normalWS,1),normalize(normalTex),_NormalIntensity);
                
                half3 H = normalize(L + V);
                half4 specular = _SpecularColor * _SpecularIntensity * pow(max(0,dot(N.xyz,H)),_Smoothness);
                
                //6、水的反射
                half3 reflectionUV = reflect(-V,N.xyz);
                half4 reflectionTex = SAMPLE_TEXTURECUBE(_ReflectionTex,sampler_ReflectionTex,reflectionUV);
                
                half fresnel = 1 - saturate(dot(i.normalWS,V));
                half4 reflection = reflectionTex * fresnel;
                
                //7、水的焦散
                float4 depthVS = 1;
                depthVS.xy = i.positionVS.xy * depthDistortScene / -i.positionVS.z;
                depthVS.z = depthDistortScene;
                float4 depthWS = mul(unity_CameraToWorld,depthVS);
                float4 depthOS = mul(unity_WorldToObject,depthWS);
                
                float2 uv1 = depthOS.xz * _CausticsTex_ST.xy + depthWS.y *0.1+ _Time.y * _WaterSpeed;
                float2 uv2 = depthOS.xz * _CausticsTex_ST.xy + depthWS.y *0.1+ _Time.y * _WaterSpeed * float2(-1.1,1.3);
                
                half4 causticsTex1 = SAMPLE_TEXTURE2D(_CausticsTex,sampler_CausticsTex,uv1);
                half4 causticsTex2 = SAMPLE_TEXTURE2D(_CausticsTex,sampler_CausticsTex,uv2);
                half4 causticsTex = min(causticsTex1,causticsTex2);
                
                half4 col = (foamColor + waterColor) * opaqueTex + (specular * reflection) + causticsTex;
                
                return col;
            }
            ENDHLSL
        }
    }
    FallBack "Hidden/Shader Graph/FallbackError"
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/415114.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

[WebUI Forge]ForgeUI的安装与使用 | 相比较于Auto1111 webui 6G显存速度提升60-75%

ForgeUI的github主页地址:https://github.com/lllyasviel/stable-diffusion-webui-forge Stable Diffusion WebUI Forge 是一个基于Stable Diffusion WebUI(基于Gradio)的平台,可简化开发、优化资源管理并加快推理速度。 “Forge”这个名字的灵感来自于“Minecraft Forge”…

《Vite 基础知识》Vitepress 技术文档站点搭建与配置

前言 简介 VitePress 是一个静态站点生成器 (SSG)&#xff0c;专为构建快速、以内容为中心的站点而设计。 简而言之&#xff0c;可构建你自己的 技术文档站点&#xff1b; 环境要求 Node.js 18 及以上版本。我使用 v20.11.0 创建 第一步&#xff1a; 全局安装 npm i vitep…

图搜索基础-深度优先搜索

图搜索基础-深度优先搜索 参考原理引入流程解析手推例子 代码实现运行结果结果分析 参考 理论参考&#xff1a;深蓝学院 实现参考&#xff1a;github项目 原理 引入 对于这样一个图&#xff0c;我们试图找到S到G的通路&#xff1a; 计算机程序不会像人眼一样&#xff0c;一…

鸿蒙应用程序包安装和卸载流程

开发者 开发者可以通过调试命令进行应用的安装和卸载&#xff0c;可参考多HAP的调试流程。 图1 应用程序包安装和卸载流程&#xff08;开发者&#xff09; 多HAP的开发调试与发布部署流程 多HAP的开发调试与发布部署流程如下图所示。 图1 多HAP的开发调试与发布部署流程 …

线性DP-前缀和

哪种连续子字符串更长 思路 我们遍历输入字符串s中的每个字符。对于每个字符&#xff0c;我们检查它是1还是0&#xff0c;并相应地更新currentLength1和currentLength0。当我们遇到一个1时&#xff0c;我们增加currentLength1的值&#xff0c;并将currentLength0重置为0&#…

2023秋季飞书未来无限大会--随笔

这个时代的飞书 数字时代 工作协同平台 AI时代 帮助企业和个人用好AI 企业如何引用大模型能力&#xff1f; 智慧体— 接近人&#xff0c;有进步空间智能伙伴 用时代的科技打造爱不释手的好产品 移动互联网 – 改变信息分发方式 大模型 –自然的人机交互方式 业务协同 …

Swagger接口文档管理工具

Swagger 1、Swagger1.1 swagger介绍1.2 项目集成swagger流程1.3 项目集成swagger 2、knife4j2.1 knife4j介绍2.2 项目集成knife4j 1、Swagger 1.1 swagger介绍 官网&#xff1a;https://swagger.io/ Swagger 是一个规范和完整的Web API框架&#xff0c;用于生成、描述、调用和…

kali linux通过aircrack-ng命令破解wifi密码

相关阅读&#xff1a;如何破解攻击WiFi 百度安全验证https://baijiahao.baidu.com/s?id1764248756021219497&wfrspider&forpc上面2篇文章写得都很不错 一、前期准备工作 1、将无线网卡挂载到Kali上 ​ 将无线网卡插到电脑上&#xff0c;如果弹出检测到新的USB设备&…

break,continue

break&#xff1a;跳出并结束循环 continue:跳过本次循环&#xff0c;执行下一次循环 代码演示&#xff1a; package com.zhang.loop;public class BreakAndContinueDemo8 {public static void main(String[] args) {//掌握break和continue的作用//1. break&#xff1a;跳出循…

​LeetCode解法汇总2673. 使二叉树所有路径值相等的最小代价

目录链接&#xff1a; 力扣编程题-解法汇总_分享记录-CSDN博客 GitHub同步刷题项目&#xff1a; https://github.com/September26/java-algorithms 原题链接&#xff1a;. - 力扣&#xff08;LeetCode&#xff09; 描述&#xff1a; 给你一个整数 n 表示一棵 满二叉树 里面节…

Java设计模式 | 七大原则之迪米特法则

基本介绍 一个对象应该对其他对象保持最少的了解类与类关系越密切&#xff0c;耦合度越大迪米特法则&#xff08;Demeter Principle&#xff09;又叫最少知道法则&#xff0c;即一个类对自己依赖的类知道的越少越好。也就是说&#xff0c;对于被依赖的类不管多么复杂&#xff…

虚拟机 VMware 安装 Windows2000 (iso 光盘镜像)

上篇博客关于 kali 的安装&#xff0c;我们下载的直接是 vmx 文件 这次我们以 iso 文件为例&#xff0c;因此配置过程会有些许不同 先在本地新建一个文件夹用于存放我们一会儿下载的 iso 镜像文件 下载好后是一个后缀为 .iso 的文件 同样我们先打开 VMware 依次点击文件 -&g…

亚信安慧AntDB开启超融合数据库新纪元

&#xff08;一&#xff09; 前言 据统计&#xff0c;在信息化时代的今天&#xff0c;人们一天所接触到的信息量&#xff0c;是古人一辈子所能接收到的信息量的总和。当今社会中除了信息量“多”以外&#xff0c;人们对信息处理的“效率”和“速度”的要求也越来越高。譬如&…

lv21 QT对话框3

1 内置对话框 标准对话框样式 内置对话框基类 QColorDialog, QErrorMessage QFileDialog QFontDialog QInputDialog QMessageBox QProgressDialogQDialog Class帮助文档 示例&#xff1a;各按钮激发对话框实现基类提供的各效果 第一步&#xff1a;实现组件布局&…

C语言标准库函数qsort( )——数据排序

大家好&#xff01;我是保护小周ღ&#xff0c;本期为大家带来的是深度解剖C语言标准库函数 qsort()&#xff0c;qsort()函数他可以对任意类型的数据排序&#xff0c;博主会详细解释函数使用方法&#xff0c;以及使用快速排序的左右指针法模拟实现函数功能&#xff0c;这样的排…

本科毕业设计:计及并网依赖性的分布式能源系统优化研究。(C语言实现)(内包含NSGA II优化算法)(一)

目录 前言 1、分布式能源系统模型介绍 2、运行策略 前言 本篇文章介绍的是我的毕业设计&#xff0c;我将C语言将其实现。 1、分布式能源系统模型介绍 这是我将研究的分布式能源系统的框架&#xff0c;内部供能装置包括&#xff1a;太阳能光伏板&#xff1b;sofc燃料电池、太阳…

【数据结构】周末作业

1.new(struct list_head*)malloc(sizeof(struct list_head*)); if(newNULL) { printf("失败\n"); return; } new->nextprev->next; prev->nextnew; return; 2.struct list_head* pprev->next; prev->nextp->next; p->next->prevpr…

设计模式----装饰器模式

在软件开发过程中&#xff0c;有时想用一些现存的组件。这些组件可能只是完成了一些核心功能。但在不改变其结构的情况下&#xff0c;可以动态地扩展其功能。所有这些都可以釆用装饰器模式来实现。 装饰器模式 允许向一个现有的对象添加新的功能&#xff0c;同时又不改变他的…

python_可视化_交互_多条线段点击高亮显示

需求 使用matplotlib 绘制折线图 响应鼠标事件 单击折线 线条高亮显示 解决方法: 使用 mplcursors 库, 一句代码可实现. 代码 import matplotlib.pyplot as plt import mplcursors import numpy as np# 生成一些示例数据 x np.linspace(0, 10, 100) y np.sin(x)# 创建绘图…

Linux的gdb调试

文章目录 一、编译有调试信息的目标文件二、启动gdb调试文件1、查看内容list/l&#xff1a;l 文件名:行号/函数名&#xff0c;l 行号/函数名2、打断点b&#xff1a;b文件名:行号/函数名&#xff0c;b 行号/函数名 与 查看断点info/i&#xff1a;info b3、删除断点d&#xff1a;…