【大数据】Flink SQL 语法篇(八):集合、Order By、Limit、TopN

Flink SQL 语法篇(八):集合、Order By、Limit、TopN

  • 1.集合操作
  • 2.Order By、Limit 子句
    • 2.1 Order By 子句
    • 2.2 Limit 子句
  • 3.TopN 子句

1.集合操作

集合操作支持 Batch / Streaming 任务。

在这里插入图片描述

  • UNION:将集合合并并且去重。
  • UNION ALL:将集合合并,不做去重。
Flink SQL> create view t1(s) as values ('c'), ('a'), ('b'), ('b'), ('c');
Flink SQL> create view t2(s) as values ('d'), ('e'), ('a'), ('b'), ('b');

Flink SQL> (SELECT s FROM t1) UNION (SELECT s FROM t2);
+---+
|  s|
+---+
|  c|
|  a|
|  b|
|  d|
|  e|
+---+

Flink SQL> (SELECT s FROM t1) UNION ALL (SELECT s FROM t2);
+---+
|  c|
+---+
|  c|
|  a|
|  b|
|  b|
|  c|
|  d|
|  e|
|  a|
|  b|
|  b|
+---+
  • Intersect:交集并且去重。
  • Intersect ALL:交集不做去重。
Flink SQL> create view t1(s) as values ('c'), ('a'), ('b'), ('b'), ('c');
Flink SQL> create view t2(s) as values ('d'), ('e'), ('a'), ('b'), ('b');
Flink SQL> (SELECT s FROM t1) INTERSECT (SELECT s FROM t2);
+---+
|  s|
+---+
|  a|
|  b|
+---+

Flink SQL> (SELECT s FROM t1) INTERSECT ALL (SELECT s FROM t2);
+---+
|  s|
+---+
|  a|
|  b|
|  b|
+---+
  • Except:差集并且去重。
  • Except ALL:差集不做去重。
Flink SQL> (SELECT s FROM t1) EXCEPT (SELECT s FROM t2);
+---+
| s |
+---+
| c |
+---+

Flink SQL> (SELECT s FROM t1) EXCEPT ALL (SELECT s FROM t2);
+---+
| s |
+---+
| c |
| c |
+---+

上述 SQL 在流式任务中,如果一条左流数据先来了,没有从右流集合数据中找到对应的数据时会直接输出,当右流对应数据后续来了之后,会下发回撤流将之前的数据给撤回。这也是一个回撤流。

  • In 子查询:这个大家比较熟悉了,但是注意,In 子查询的结果集只能有一列。
SELECT user, amount
FROM Orders
WHERE product IN (
    SELECT product FROM NewProducts
)

上述 SQL 的 In 子句其实就和之前介绍到的 Inner Join 类似。并且 In 子查询也会涉及到大状态问题,大家注意设置 State 的 TTL。

2.Order By、Limit 子句

2.1 Order By 子句

支持 Batch / Streaming,但在实时任务中一般用的非常少。

实时任务中,Order By 子句中 必须要有时间属性字段,并且时间属性必须为 升序 时间属性,即 WATERMARK FOR rowtime_column AS rowtime_column - INTERVAL '0.001' SECOND 或者 WATERMARK FOR rowtime_column AS rowtime_column

举例:

CREATE TABLE source_table_1 (
    user_id BIGINT NOT NULL,
    row_time AS cast(CURRENT_TIMESTAMP as timestamp(3)),
    WATERMARK FOR row_time AS row_time
) WITH (
  'connector' = 'datagen',
  'rows-per-second' = '10',
  'fields.user_id.min' = '1',
  'fields.user_id.max' = '10'
);

CREATE TABLE sink_table (
    user_id BIGINT
) WITH (
  'connector' = 'print'
);

INSERT INTO sink_table
SELECT user_id
FROM source_table_1
Order By row_time, user_id desc

2.2 Limit 子句

支持 Batch / Streaming,但实时场景一般不使用,但是此处依然举一个例子。

CREATE TABLE source_table_1 (
    user_id BIGINT NOT NULL,
    row_time AS cast(CURRENT_TIMESTAMP as timestamp(3)),
    WATERMARK FOR row_time AS row_time
) WITH (
  'connector' = 'datagen',
  'rows-per-second' = '10',
  'fields.user_id.min' = '1',
  'fields.user_id.max' = '10'
);

CREATE TABLE sink_table (
    user_id BIGINT
) WITH (
  'connector' = 'print'
);

INSERT INTO sink_table
SELECT user_id
FROM source_table_1
Limit 3

结果如下,只有 3 条输出:

+I[5]
+I[9]
+I[4]

3.TopN 子句

TopN 定义(支持 Batch / Streaming):TopN 其实就是对应到离线数仓中的 row_number(),可以使用 row_number() 对某一个分组的数据进行排序。

应用场景:根据 某个排序 条件,计算 某个分组 下的排行榜数据。

SQL 语法标准:

SELECT [column_list]
FROM (
   SELECT [column_list],
     ROW_NUMBER() OVER ([PARTITION BY col1[, col2...]]
       ORDER BY col1 [asc|desc][, col2 [asc|desc]...]) AS rownum
   FROM table_name)
WHERE rownum <= N [AND conditions]
  • ROW_NUMBER():标识 TopN 排序子句。
  • PARTITION BY col1[, col2...]:标识分区字段,代表按照这个 col 字段作为分区粒度对数据进行排序取 TopN,比如下述案例中的 partition by key,就是根据需求中的搜索关键词(key)做为分区。
  • ORDER BY col1 [asc|desc][, col2 [asc|desc]...]:标识 TopN 的排序规则,是按照哪些字段、顺序或逆序进行排序。
  • WHERE rownum <= N:这个子句是一定需要的,只有加上了这个子句,Flink 才能将其识别为一个 TopN 的查询,其中 N 代表 TopN 的条目数。
  • [AND conditions]:其他的限制条件也可以加上。

实际案例:取某个搜索关键词下的搜索热度前 10 名的词条数据。

输入数据为搜索词条数据的搜索热度数据,当搜索热度发生变化时,会将变化后的数据写入到数据源的 Kafka 中:

-- 数据源 schema

-- 字段名         备注
-- key          搜索关键词
-- name         搜索热度名称
-- search_cnt    热搜消费热度(比如 3000)
-- timestamp       消费词条时间戳

CREATE TABLE source_table (
    name BIGINT NOT NULL,
    search_cnt BIGINT NOT NULL,
    key BIGINT NOT NULL,
    row_time AS cast(CURRENT_TIMESTAMP as timestamp(3)),
    WATERMARK FOR row_time AS row_time
) WITH (
  ...
);

-- 数据汇 schema

-- key          搜索关键词
-- name         搜索热度名称
-- search_cnt    热搜消费热度(比如 3000)
-- timestamp       消费词条时间戳

CREATE TABLE sink_table (
    key BIGINT,
    name BIGINT,
    search_cnt BIGINT,
    `timestamp` TIMESTAMP(3)
) WITH (
  ...
);

-- DML 逻辑
INSERT INTO sink_table
SELECT key, name, search_cnt, row_time as `timestamp`
FROM (
   SELECT key, name, search_cnt, row_time, 
     -- 根据热搜关键词 key 作为 partition key,然后按照 search_cnt 倒排取前 100 名
     ROW_NUMBER() OVER (PARTITION BY key
       ORDER BY search_cnt desc) AS rownum
   FROM source_table)
WHERE rownum <= 100

输出结果:

-D[关键词1, 词条1, 4944]
+I[关键词1, 词条1, 8670]
+I[关键词1, 词条2, 1735]
-D[关键词1, 词条3, 6641]
+I[关键词1, 词条3, 6928]
-D[关键词1, 词条4, 6312]
+I[关键词1, 词条4, 7287]

可以看到输出数据是有回撤数据的,为什么会出现回撤,我们来看看 SQL 语义。

上面的 SQL 会翻译成以下三个算子:

  • 数据源:数据源即最新的词条下面的搜索词的搜索热度数据,消费到 Kafka 中数据后,按照 partition key 将数据进行 Hash 分发到下游排序算子,相同的 Key 数据将会发送到一个并发中。
  • 排序算子:为每个 Key 维护了一个 TopN 的榜单数据,接受到上游的一条数据后,如果 TopN 榜单还没有到达 N 条,则将这条数据加入 TopN 榜单后,直接下发数据,如果到达 N 条之后,经过 TopN 计算,发现这条数据比原有的数据排序靠前,那么新的 TopN 排名就会有变化,就变化了的这部分数据之前下发的排名数据撤回(即回撤数据),然后下发新的排名数据。
  • 数据汇:接收到上游的数据之后,然后输出到外部存储引擎中。

上面三个算子也是会 24 小时一直运行的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/414957.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【算法历练】动态规划副本—路径问题

&#x1f3ac;慕斯主页&#xff1a;修仙—别有洞天 ♈️今日夜电波&#xff1a;宙でおやすみ 1:02━━━━━━️&#x1f49f;──────── 2:45 &#x1f504; ◀️ ⏸ ▶️ ☰ &#…

秋招上岸大厂,分享一下自己的笔记

秋招上岸大厂&#xff0c;说一说自己的经验 网关项目 很多人读了我的《秋招上岸大厂&#xff0c;分享一下自己的经验》这篇文章&#xff0c;来问我&#xff0c;你面试的时候都用什么项目&#xff1f;你的八股都是从哪里学的&#xff1f;你的项目场景是什么样子的呢&#xff1f;…

计算机网络:路由协议

路由协议简介 路由协议是计算机网络中不可或缺的一部分&#xff0c;它们负责确定数据包从源地址到目的地址的最佳路径。想象一下&#xff0c;如果你是一个数据包&#xff0c;路由协议就像是地图或导航工具&#xff0c;指导你如何到达目的地。 目录 路由协议简介 工作原理简化…

web组态软件

1、强大的画面显示web组态功能 2、良好的开放性。 开放性是指组态软件能与多种通信协议互联&#xff0c;支持多种硬件设备&#xff0c;向上能与管理层通信&#xff0c;实现上位机和下位机的双向通信。 3、丰富的功能模块。 web组态提供丰富的控制功能库&#xff0c;满足用户的测…

配置与管理Samba服务器

配置与管理samba服务器 1&#xff0c;作用&#xff1a;可以使用户在异构网络操作系统之间进行文件系统共享 2&#xff0c;**SMB协议&#xff1a;**主要是作为Microsoft网络的通讯协议&#xff1b;一般端口使用为139&#xff0c;445。 3&#xff0c;功能&#xff1a;1&#x…

基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的活体人脸检测系统(Python+PySide6界面+训练代码)

摘要&#xff1a;本篇博客详细讲述了如何利用深度学习构建一个活体人脸检测系统&#xff0c;并且提供了完整的实现代码。该系统基于强大的YOLOv8算法&#xff0c;并进行了与前代算法YOLOv7、YOLOv6、YOLOv5的细致对比&#xff0c;展示了其在图像、视频、实时视频流和批量文件处…

在from子句中使用子查询

目录 查询每个部门的编号、名称、位置、部门人数、平均工资 多表查询分组统计 子查询分组统计 Oracle从入门到总裁:https://blog.csdn.net/weixin_67859959/article/details/135209645 为了解释这种查询的作用&#xff0c;下面做一个简单的查询 查询每个部门的编号、名称、…

Qt中tableView控件的使用

tableView使用注意事项 tableView在使用时&#xff0c;从工具栏拖动到底层页面后&#xff0c;右键进行选择如下图所示&#xff1a; 此处需要注意的是&#xff0c;需要去修改属性&#xff0c;从UI上修改属性如下所示&#xff1a; 也可以通过代码修改属性&#xff1a; //将其设…

存内计算技术大幅提升机器学习算法的性能—挑战与解决方案探讨

一.存内计算技术大幅机器学习算法的性能 1.1背景 人工智能技术的迅速发展使人工智能芯片成为备受关注的关键组成部分。在人工智能的构建中&#xff0c;算力是三个支柱之一&#xff0c;包括数据、算法和算力。目前&#xff0c;人工智能芯片的发展主要集中在两个方向&#xff1…

《App备案入门指南》:拯救备案小白,让您不再担心

各大云接入商ICP代备案管理系统均已正式支持App备案。为便于大家快速学习了解App备案的相关知识&#xff0c;创孵猫通过网上搜集和整理为大家准备了一些基础信息与常见问题。 一、App备案流程 App备案流程包括云接入商初审、工信部短信核验、管局终审和备案成功等关键步骤。在…

腾讯云4核8G的云服务器性能水平?使用场景说明

腾讯云4核8G服务器适合做什么&#xff1f;搭建网站博客、企业官网、小程序、小游戏后端服务器、电商应用、云盘和图床等均可以&#xff0c;腾讯云4核8G服务器可以选择轻量应用服务器4核8G12M或云服务器CVM&#xff0c;轻量服务器和标准型CVM服务器性能是差不多的&#xff0c;轻…

等保2.0高风险项全解析:判定标准与应对方法

引言 所谓高风险项&#xff0c;就是等保测评时可以一票否决的整改项&#xff0c;如果不改&#xff0c;无论你多少分都会被定为不合格。全文共58页&#xff0c;写得比较细了&#xff0c;但是想到大家基本不会有耐心去仔细看的&#xff08;凭直觉&#xff09;。这几天挑里边相对…

5G网络介绍

目录 一、网络部署模式 二、4/5G基站网元对标 三、4/5G系统架构对比 四、5G核心单元 五、边缘计算 六、轻量化&#xff08;UPF下沉&#xff09; 方案一&#xff1a;UPF下沉 方案二&#xff1a;UPF下沉 方案三&#xff1a;5GC下沉基础模式 方案四&#xff1a;…

K8S之使用Deployment实现滚动更新

滚动更新 滚动更新简介使用Deployment实现滚动更新相关字段介绍测试滚动更新观察滚动更新查看历史版本 自定义滚动更新策略自定义配置建议实践自定义策略通过 RollingUpdateStrategy 字段来设置滚动更新策略使用Recreate更新策略 滚动更新简介 滚动更新是一种自动化程度较高的…

代码随想录算法训练营第27天—贪心算法01 | ● 理论基础 ● 455.分发饼干 ● 376. 摆动序列 ● 53. 最大子序和

理论基础 https://programmercarl.com/%E8%B4%AA%E5%BF%83%E7%AE%97%E6%B3%95%E7%90%86%E8%AE%BA%E5%9F%BA%E7%A1%80.html 贪心算法的本质&#xff1a;由局部最优推到全局最优贪心算法的套路&#xff1a;无固定套路 455.分发饼干 https://programmercarl.com/0455.%E5%88%8…

小程序框架(概念、工作原理、发展及应用)

引言 移动应用的普及使得用户对于轻量级、即时可用的应用程序需求越来越迫切。在这个背景下&#xff0c;小程序应运而生&#xff0c;成为一种无需下载安装、即点即用的应用形式&#xff0c;为用户提供了更便捷的体验。小程序的快速发展离不开强大的开发支持&#xff0c;而小程…

vue项目从后端下载文件显示进度条或者loading

//API接口 export const exportDownload (params?: Object, peCallback?: Function) > {return new Promise((resolve, reject) > {axios({method: get,url: ,headers: {access_token: ${getToken()},},responseType: blob,params,onDownloadProgress: (pe) > {peC…

市场复盘总结 20240228

仅用于记录当天的市场情况&#xff0c;用于统计交易策略的适用情况&#xff0c;以便程序回测 短线核心&#xff1a;不参与任何级别的调整&#xff0c;采用龙空龙模式 一支股票 10%的时候可以操作&#xff0c; 90%的时间适合空仓等待 二进三&#xff1a; 进级率 25% 最常用的二…

LeetCode104.二叉树的最大深度

题目 给定一个二叉树 root &#xff0c;返回其最大深度。 二叉树的 最大深度 是指从根节点到最远叶子节点的最长路径上的节点数。 示例 输入&#xff1a;root [3,9,20,null,null,15,7] 输出&#xff1a;3思路 计算二叉树的最大深度通常可以使用 递归 来实现。我们可以从根…