C语言第三十二弹---自定义类型:联合和枚举

个人主页: 熬夜学编程的小林

💗系列专栏: 【C语言详解】 【数据结构详解】

目录

1、联合体

1.1、联合体类型的声明

1.2、联合体的特点

1.3、相同成员的结构体和联合体对比

1.4、联合体大小的计算

1.5、联合的⼀个练习

2、枚举类型

2.1、枚举类型的声明

2.2、枚举类型的优点

2.3、枚举类型的使用

总结


1、联合体

1.1、联合体类型的声明

像结构体⼀样,联合体也是由⼀个或者多个成员构成,这些成员可以不同的类型。
但是编译器 只为最大的成员分配足够的内存空间 。联合体的特点是 所有成员共用同⼀块内存空间。 所以联合体也叫: 共用体
给联合体其中⼀个成员赋值,其他成员的值也跟着变化。
#include <stdio.h>
//联合类型的声明
union Un
{
 char c;
 int i;
};

int main()
{
 //联合体局部变量的定义
 union Un un = {0};
 //计算联合体变量的大小
 printf("%d\n", sizeof(un));
 return 0;
}
那现在uu来思考一个问题,上面的联合体变量un的大小是多少?
输出的结果:
为什么是4呢?
计算联合体的大小跟结构体类似,需要知道联合体的内存布局,才能准确计算出大小,因此我们先学习关于联合体的相关知识再来详细讲解计算大小问题。

1.2、联合体的特点

联合的成员是共⽤同⼀块内存空间的,这样⼀个联合变量的大小,至少是最大成员的大小(因为联合至少得有能力保存最大的那个成员)。
//代码1
#include <stdio.h>
//联合类型的声明
union Un
{
 char c;
 int i;
};
int main()
{
 //联合变量的定义
 union Un un = {0};
 // 下⾯输出的结果是⼀样的吗?
 printf("%p\n", &(un.i));
 printf("%p\n", &(un.c));
 printf("%p\n", &un);
 return 0;
}
通过上述代码我们可以知道联合体的每个成员地址和联合体的首地址是相同的。
//代码2
#include <stdio.h>
//联合类型的声明
union Un
{
 char c;
 int i;
};
int main()
{
 //联合变量的定义
 union Un un = {0};//初始化
 un.i = 0x11223344;//赋值
 un.c = 0x55;
 printf("%x\n", un.i);
 return 0;
}
输出的结果:
代码1输出的三个地址⼀模⼀样,代码2的输出,我们发现将i的第4个字节的内容修改为55了。
我们仔细分析就可以画出,un的内存布局图。

1.3、相同成员的结构体和联合体对比

我们再对比⼀下相同成员的结构体和联合体的内存布局情况。
struct S
{
 char c;
 int i;
};
struct S s = {0};
union Un
{
 char c;
 int i;
};
union Un un = {0};

1.4、联合体大小的计算

联合的大小至少是最大成员的大小。
当最大成员大小不是最大对齐数的整数倍的时候,就要对齐到最大对齐数的整数倍。
注意:对齐数跟结构体说描述的对齐数是相同的。
#include <stdio.h>
union Un1
{
 char c[5];
 int i;
};
union Un2
{
 short c[7];
 int i;
};
int main()
{
 //下面输出的结果是什么?
 printf("%d\n", sizeof(union Un1));
 printf("%d\n", sizeof(union Un2));
 return 0;
}
使用联合体是可以节省空间的,举例:
比如,我们要搞⼀个活动,要上线⼀个礼品兑换单,礼品兑换单中有三种商品:图书、杯⼦、衬衫。
每⼀种商品都有:库存量、价格、商品类型和商品类型相关的其他信息。
图书:书名、作者、页数
杯⼦:设计
衬衫:设计、可选颜色、可选尺寸
那我们不耐心思考,直接写出⼀下结构:
struct gift_list
{
 //公共属性
 int stock_number;//库存量
 double price; //定价
 int item_type;//商品类型
 
 //特殊属性
 char title[20];//书名
 char author[20];//作者
 int num_pages;//⻚数
 
 char design[30];//设计
 int colors;//颜⾊
 int sizes;//尺⼨
};
上述的结构其实设计的很简单,用起来也方便,但是结构的设计中包含了所有礼品的各种属性,这样使得结构体的大小就会偏大,比较浪费内存。因为对于礼品兑换单中的商品来说,只有部分属性信息是常用的。
比如:
商品是图书,就不需要design、colors、sizes。
所以我们就可以把公共属性单独写出来,剩余属于各种商品本身的属性使用联合体起来,这样就可以介绍所需的内存空间,⼀定程度上节省了内存。
struct gift_list
{
 int stock_number;//库存量
 double price; //定价
 int item_type;//商品类型
 
 union{
 struct
 {
 char title[20];//书名
 char author[20];//作者
 int num_pages;//⻚数
 }book;
 struct
 {
 char design[30];//设计
 }mug;
 struct
 {
 char design[30];//设计
 int colors;//颜⾊
 int sizes;//尺⼨
 }shirt;
 }item;
};

1.5、联合的⼀个练习

写⼀个程序,判断当前机器是大端?还是小端?
int check_sys()
{
 union//匿名联合体
 {
 int i;
 char c;
 }un;//联合体变量
 un.i = 1;//16进制为00 00 00 01   内存中存储为01 00 00 00  (小端)
 //下图表示的是内存中的存储
 return un.c;//返回1是⼩端,返回0是⼤端
}

注:联合体的定义初始化以及匿名联合体和结构体方式一致,此处就不详细讲解了。可以去看上两弹的结构体创建定义初始化以及匿名结构体。

2、枚举类型

2.1、枚举类型的声明

枚举顾名思义就是⼀⼀列举。
把可能的取值⼀⼀列举。
比如我们现实生活中:
⼀周的星期⼀到星期日是有限的7天,可以⼀⼀列举
性别有:男、女、保密,也可以⼀⼀列举
月份有12个月,也可以⼀⼀列举
三原色,也是可以意义列举
这些数据的表示就可以使用枚举了。
enum Day//星期
{
 Mon,//0
 Tues,//1
 Wed,//2
 Thur,
 Fri,
 Sat,
 Sun
};
enum Sex//性别
{
 MALE,//0
 FEMALE,//1
 SECRET//2
};
enum Color//颜⾊
{
 RED,//0
 GREEN,//1
 BLUE//2
};
以上定义的 enum Day enum Sex enum Color 都是枚举类型。
{}中的内容是枚举类型的可能取值,也叫 枚举常量
这些可能取值都是有值的, 默认从0开始,依次递增1 ,当然在声明枚举类型的时候也可以赋初值。
enum Color//颜⾊
{
 RED=2,
 GREEN=4,
 BLUE=8
};

2.2、枚举类型的优点

为什么使用枚举?
我们可以使用  #define 定义常量,为什么用要使用枚举?
枚举的优点:
1. 增加代码的可读性和可维护性。
2. 和#define定义的标识符比较枚举有类型检查,更加严谨。
3. 便于调试,预处理阶段会删除 #define 定义的符号。
4. 使用方便,⼀次可以定义多个常量。
5. 枚举常量是遵循作用域规则的,枚举声明在函数内,只能在函数内使用。

2.3、枚举类型的使用

enum Color//颜⾊
{
 RED=1,
 GREEN=2,
 BLUE=4
};
enum Color clr = GREEN;//使⽤枚举常量给枚举变量赋值
那是否可以拿整数给枚举变量赋值呢?在C语言中是可以的,但是在C++是不行的,C++的类型检查比较严格。

总结


本篇博客就结束啦,谢谢大家的观看,如果公主少年们有好的建议可以留言喔,谢谢大家啦!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/414920.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

微信小程序引入Vant插件

Vant官网&#xff1a;Vant Weapp - 轻量、可靠的小程序 UI 组件库 先查看官网的版本 新建一个package.json页面&#xff0c;代码写上&#xff1a;&#xff08;我先执行的npm安装没出package页面&#xff0c;所以先自己创建了一个才正常&#xff09; {"dependencies"…

Aethir推出其首次去中心化AI节点售卖

Aethir&#xff0c;去中心化GPU云基础设施领导者&#xff0c;宣布其备受期待的节点销售。Aethir是一家企业级的以AI和游戏为重点的GPU即服务提供商。Aethir的去中心化云计算基础设施使GPU提供商能够与需要NVIDIA的H100芯片提供强大AI/ML任务支持的企业客户相连接。 此外&#x…

网页数据的存储--存储为文本文件(TXT、JSON、CSV)

用解析器解析出数据后&#xff0c;接下来就是存储数据了。数据的存储有多种多样&#xff0c;其中最简单的一种是将数据直接保存为文本文件&#xff0c;如TXT、JSON、CSV等。这里就介绍将数据直接保存为文本文件。 目录 一、Python存储数据的方法 1、 文件读取 2、 文件写入…

线性规划基础

利用一个简单的实例来介绍什么事线性规划,假设如果有一家巧克力工厂需要生产两种不同类型的巧克力,分别是类型A和类型B,两种巧克力用到的原材料是一样的,都是使用牛奶和可可两种材料,主要的区别是在与这两种原料的配料比区别,而对于类型A巧克力,生产一单位的巧克力会需要…

06|Mysql内部组件结构

1. 连接器 客户端要向mysql发起通信都必须先跟Server端建立通信连接&#xff0c;而建立连接的工作就是由连接器完成的 mysql -h host[数据库地址] -u root[用户] -p root[密码] -P 3306连接步骤: 1、如果用户名或密码不对&#xff0c;你就会收到一个"Access denied for us…

Unity(第十四部)光照

原始的有默认灯光、除了默认的你还可以创建 1、定向光源&#xff08;类似太阳、从无限远的地方射向地面的光&#xff0c;光源位置并不影响照射角度等&#xff0c;不同方向的旋转影响角度和明亮&#xff09; 1. 颜色&#xff1a;调整光的颜色2. 模式&#xff1a;混合是实时加烘…

【大数据架构(2)】kappa架构介绍

文章目录 一. Kappa架构1. Speed Layer (Stream Layer) - The Foundation of Kappa Architecture2. Stream Processing: The Heart of Kappa Architecture 二. Benefits of Kappa and Streaming Architecture1. Simplicity and Streamlined Pipeline2. High-Throughput Process…

Vue 3, TypeScript 和 Element UI Plus:前端开发的高级技巧与最佳实践

Vue 3、TypeScript 和 Element UI Plus 结合使用时&#xff0c;可以提供一个强大且灵活的前端开发环境。以下是一些高级用法和技巧&#xff0c;帮助你更有效地使用这些技术&#xff1a; 1. Vue 3 高级特性 Composition API 使用 setup 函数: Vue 3 引入了 Composition API&am…

软考50-上午题-【数据库】-SQL访问控制

一、SQL访问控制 数据控制&#xff0c;控制的是用户对数据的存储权力&#xff0c;由DBA决定。 DBA&#xff1a;数据库管理员。 DBMS数据控制应该具有一下功能&#xff1a; 1-1、授权语句格式 说明&#xff1a; 示例&#xff1a; 1-2、收回权限语句格式 示例&#xff1a; PUBLI…

【C++】拿下! C++中的内存管理

内存管理 1 C 的内存分布2 C语言的内存管理3 C的内存管理3.1 内置类型操作3.2 自定义类型操作 4 operator new与operator delete函数&#xff08;重点&#xff09;5 new和delete的实现原理5.1 内置类型5.2 自定义类型new的原理delete的原理new T[ N ] 的原理lete[]的原理 6 总结…

开源现场总线协议栈(ethercat、ethernet/ip、opc ua、profinet、canopen、modbus)

ecat主站及其相关&#xff1a; 1.soem&#xff1a;GitHub - OpenEtherCATsociety/SOEM: Simple Open Source EtherCAT MasterSimple Open Source EtherCAT Master. Contribute to OpenEtherCATsociety/SOEM development by creating an account on GitHub.https://github.com/…

vue项目导出excel ,文件过大导致请求超时的处理方法

一、因为文件过大&#xff0c;请求时间较长&#xff0c;就会产生请求超时的情况&#xff0c;处理方式是可以分为三个接口&#xff0c;接口1用来获取id值&#xff0c;接口2利用id值发起请求&#xff0c;询问是否准备好下载&#xff0c;如果没准备好&#xff0c;则没隔一秒再次发…

LeetCode300.最长递增子序列

题目 给你一个整数数组 nums &#xff0c;找到其中最长严格递增子序列的长度。 子序列 是由数组派生而来的序列&#xff0c;删除&#xff08;或不删除&#xff09;数组中的元素而不改变其余元素的顺序。例如&#xff0c;[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。 示例 …

GaN建模:强大但富有挑战性

来源&#xff1a;Modeling GaN: Powerful but Challenging&#xff08;10年&#xff09; 文章的研究内容 这篇文章主要研究了氮化镓&#xff08;GaN&#xff09;高电子迁移率晶体管&#xff08;HEMTs&#xff09;的建模问题。GaN HEMTs是微波频段高功率发射器设计中的关键技术…

Linux服务器中文乱码如何解决

如果服务器上数字和英文均可正常展示&#xff0c;只有中文是奇奇怪怪的乱码&#xff0c;那么可以考虑是服务器本身字体输出有问题。 如何在服务器上安装中文宋体字体库呢&#xff0c;排查及安装字体库步骤如下&#xff1a; 使用 fc-list命令检查服务器是否安装字体库如果提示…

若依前后端分离版开源项目学习

前言&#xff1a;vscode中vue代码没有高亮显示&#xff0c;可以下载vetur插件解决&#xff0c;ctrl点击无法跳转函数定义问题&#xff0c;可以下载vue-helper插件解决&#xff1b;idea中ctrl点击函数即可跳转函数定义。 一、登录 1.生成验证码 基本思路&#xff1a; 后端生…

C#,数值计算,求解微分方程的吉尔(Gear)四阶方法与源代码

1 微分方程 微分方程&#xff0c;是指含有未知函数及其导数的关系式。解微分方程就是找出未知函数。 微分方程是伴随着微积分学一起发展起来的。微积分学的奠基人Newton和Leibniz的著作中都处理过与微分方程有关的问题。微分方程的应用十分广泛&#xff0c;可以解决许多与导数…

Ansible自动化运维(四)jinja2 模板、Roles角色详解

&#x1f468;‍&#x1f393;博主简介 &#x1f3c5;云计算领域优质创作者   &#x1f3c5;华为云开发者社区专家博主   &#x1f3c5;阿里云开发者社区专家博主 &#x1f48a;交流社区&#xff1a;运维交流社区 欢迎大家的加入&#xff01; &#x1f40b; 希望大家多多支…

VUE3搭载到服务器

1.搭建服务器 使用 Windows 自带的 IIS 作为服务器。 步骤如下&#xff1a;https://blog.csdn.net/qq_62464995/article/details/130140673 同时&#xff0c;上面的步骤中&#xff0c;还使用了 cpolar 将 IIS 本地网址映射到公共网址。 注&#xff1a; cpolar客户端&#xf…

【React源码 - 调度任务循环EventLoop】

我们知道在React中有4个核心包、2个关键循环。而React正是在这4个核心包中运行&#xff0c;从输入到输出渲染到web端&#xff0c;主要流程可简单分为一下4步&#xff1a;如下图&#xff0c;本文主要是介绍两大循环中的任务调度循环。 4个核心包&#xff1a; react&#xff1a;…