Redis String 类型底层揭秘

目录

前言

String 类型低层数据结构

节省内存的数据结构


前言

Redis 的 string 是个 “万金油” ,这么评价它不为过. 它可以保存Long 类型整数,字符串, 甚至二进制也可以保存。对于key,value 这样的单值,查询以及插入都是O(1)时间复杂度。满脑子都是它的优点,真的就那么好吗?如果不了解它的底层结构,会有很多坑的,下面让我们细细说来。

有这样一个需求,我们要开发一个图片存储系统,要求这个系统能快速地记录图片ID和图片在存储系统中保存的ID(图片存储对象ID)。同时还更够根据图片ID快速查询图片存储对象ID。我们现在假设图片ID和图片存储对象ID都是10位数据,而且图片数量非常多。一个图片ID 和存储对象ID正好一一对应,是典型的“键 - 单值”模式。所谓的“单值”,就是指键值对中的值就是一个值,而不是一个集合,这和 String 类型提供的“一个键对应一个值的数据”的保存形式刚好契合。

v1v2

v1:存储图片ID和图片存储对象前Reids 内存

v2:存储图片ID和图片存储对象后Reids 内存

v2.used_memory-v1.used_memory=96B ,也就是说明key,value 存储用了96个字节。一组图片的ID以及存储对象ID实际上只需要16字节就可以了。

我们来分析下。图片 ID 和图片存储对象 ID 都是 10 位数,我们可以用两个 8 字节的 Long 类型表示这两个 ID。因为8字节的Long类型表示两个ID。因为8字节的Long类型最大可以表示2的64次方的数值,肯定可以表示10位数,为啥用了96个字节呢?我们先聊聊string 底层数据结构。

String 类型底层数据结构

其实,除了记录实际的数据,String 类型还需要额外的内存空间记录数据长度、空间使用等信息,这些信息也叫元数据。当实际保存数据较小时,元数据空间很大,那就很不划算了。

大家在用Redis 的 String 类型时有没有考虑过一个问题,为啥String 那么神奇,既可以保存int,还可以保存字符串,还可以保存二进制数据。这些其实都与它低层的编码有关,不同的数可能会用不同的编码。String 编码有int、embstr 和 raw 这三种编码模式.为了详细说明,我用一张图表示:

通过图可以看出,embstr 和 Raw 编码有len,alloc, buf

  1. buf:字节数组,保存实际数据。为了表示字节数组的结束,Redis 会自动在数组最后加一个“\0”,这就会额外占用 1 个字节的开销

  2. len:占 4 个字节,表示 buf 的已用长度

  3. alloc:也占个 4 字节,表示 buf 的实际分配长度,一般大于 len

len+alloc+buf = SDS

int编码:RedisObject = 元数据+INT,其他的编码 RedisObject = 元数据+ptr

通过图我们也可以发现embstr编码的ptr 与 SDS 是一块连续的内存区域,这样就可以避免内存碎片。当保存Long 类型数据时,RedisObject 中的指针就直接赋值为整数数据了,这样就不用额外的指针再指向整数了,节省了指针的空间开销。

上面的描述我们发现RedisObject 就是我们保存的数据,那么我们是怎么找到数据呢。不要忘了Redis 会使用一个全局的哈希表保存所有的键值对。哈希表的每一项是一个Entry 也就是我们所说的哈希桶,哈希桶每一项是一个, dictEntry 的结构体,用来指向一个键值对。dictEntry 结构中有三个 8 字节的指针,分别指向 key、value 以及下一个 dictEntry。为了详细描述这个结构,我画了一个图。

通过这些知识点我们可以分析出为什么我们会存储96个字节,key,value 会根据hash 算法,在全局哈希表表找到一个哈希桶,哈希桶每个元素就是一个Entry,那么我们的key就是放在key指针所引用的RedisObject结构体,value 就是放在value指针所引用的RedisObject 的结构体。一个key,value 所占用的空间根据图所示应该包含entry 的大小以及它们自己的RedisObject。

sum(entry) = key指针占用空间+value 指针占用空间+next指针占空空间 = 8B+8B+8B=32B,为啥是32呢。由于Redis 使用的内存分配库 jemalloc 。jemalloc 有一个特点就是分配内存一定是N 的 2 的幂次数,这样可以避免经常分配内存而影响系统的性能。所以就是32B

sum(redisobject) = sum(key的redisobject)+sum(value的redisobject) = 16B+16B = 32B

一共花费了多少内存空间?sum(key+value) = sum(entry) +sum(redisobject) = 64B,可能又有人问 96B-64B=32B去哪了,那是Entry(新申请的哈希桶)的大小是32B.这个就不能算是String消耗的内存空间。明明有效数据就是16B,有48B浪费了,如果有1亿张图片呢?1亿*48B就有那么多浪费,真的是真金白银呀,有没有更加节省的内存呢?当然有,那就是ziplist。

节省内存的数据结构

Redis 有一种底层数据结构,叫压缩列表(ziplist). 这个数据结构下面我们详细讲解.我找了一个图,可以展开分析下

zlbytes 表示列表长度,zltail表示列表尾,zllen 偏移量,zlend 表示列表结束

entry 是有以下结构组成 = prev_len+len+encoding+content

prev_len:表示前一个 entry 的长度。prev_len 有两种取值情况:1 字节或 5 字节。取值 1 字节时,表示上一个 entry 的长度小于 254 字节。虽然 1 字节的值能表示的数值范围是 0 到 255,但是压缩列表中 zlend 的取值默认是 255,因此,就默认用 255 表示整个压缩列表的结束,其他表示长度的地方就不能再用 255 这个值了。所以,当上一个 entry 长度小于 254 字节时,prev_len 取值为 1 字节,否则,就取值为 5 字节。

len:表示自身长度,4 字节;

encoding:表示编码方式,1 字节;

content:保存实际数据。

这些 entry 会挨个儿放置在内存中,不需要再用额外的指针进行连接,这样就可以节省指针所占用的空间。

如果我们用ziplist结构存储数据时消耗的内存是sum(entry)= sum(prev_len)+sum(len)+sum(encoding)+sum(content)=1+4+1+8=14B实际分配了16B。

这种数据结构在Redis 中有Hash、List、Sorted set 集合类型。这种方案节省内存的原因是一个key对应一个集合数据,保存数据很多也只用一个dictEntry结构这样就节省内存,key ,value 各用一个元数据。当数据多的时候,空间复杂度就被分摊了,这样就节省内存了。

怎么保存hash的结构,我们需要对原始的单值的key用二级编码方式拆分两部分,前一部分作为Hash集合的key,后一部分作为hash集合value 的key。

以图片 ID 1101000060 和图片存储对象 ID 3302000080 为例,我们可以把图片 ID 的前 7 位(1101000)作为 Hash 类型的键,把图片 ID 的最后 3 位(060)和图片存储对象 ID 分别作为 Hash 类型值中的 key 和 value。

hset 1101000 060 3302000080

把最后 3 位作为 Hash 类型值中的 key,也是根据配置文件中的设置,只有这样才能利用ziplist 的结构,如果超过了这个阈值,那么就只能用hash表存储数据呢,并不能有效的节省内存了。

这两个阈值分别对应以下两个配置项:

hash-max-ziplist-entries:表示用压缩列表保存时哈希集合中的最大元素个数。

hash-max-ziplist-value:表示用压缩列表保存时哈希集合中单个元素的最大长度。

hash-max-ziplist-value 这个我们一定是可以满足的,hash-max-ziplist-entries 这个值一般设置成1000,三位数最大值是999加上一个特殊值000刚好1000。这个值不建议设置很大,ziplist 除了最开始的原始和最后的原始查找的时间复杂度是O(1),其他位置的元素时间复杂度是O(n),值越大,获取元素越低效

除了用hash 结构,也可以用 Sorted Set,zadd 1101000 3302000080 060 可以把value 当作score 存储。显然 Sorted Set 在插入数据性能上没有hash 高效,这是因为Sorted Set插入数据时首先根据score找到对应位置,然后在插入进去,而Hash在插入元素时,只需要将新的元素插入到ziplist的尾部即可,不需要定位到指定位置

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/414749.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

[足式机器人]Part2 Dr. CAN学习笔记-Ch00-2 - 数学知识基础

本文仅供学习使用 本文参考: B站:DR_CAN 《控制之美(卷1)》 王天威 《控制之美(卷2)》 王天威 Dr. CAN学习笔记-Ch00 - 数学知识基础 Part2 4. Ch0-4 线性时不变系统中的冲激响应与卷积4.1 LIT System:Linear Time Invariant4.2 卷积 Convolution4.3 单位冲激 Unit Impulse—…

Linux安装Nginx详细步骤

1、创建两台虚拟机,分别为主机和从机,区别两台虚拟机的IP地址 2、将Nginx素材内容上传到/usr/local目录(pcre,zlib,openssl,nginx) 附件 3、安装pcre库   3.1 cd到/usr/local目录 3.2 tar -zxvf pcre-8.36.tar.gz 解压 3.3 cd…

matlab 方向向量约束的PCA快速粗配准

目录 一、算法原理二、代码实现三、结果展示本文由CSDN点云侠原创,原文链接。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的GPT爬虫。 一、算法原理 该方法由本人原创,目前尚未见有相关论文用到。具体原理看代码即可。 二、代码实现 clc;clear; %% ------…

在Arcgis中删除过滤Openstreetmap道路属性表中指定highway类型道路

一、导出道路类型并分析 1. 导出道路类型 选中highway属性列,选择汇总→确定 2. 分析 用Excel打开输出表,包含的道路类型如下 0.空值’’ 车辆可行驶道路(和bfmap的并集) 空值(无定义道路) 二、…

数据分析(二):学生成绩预测分析报告

目录 摘要 一、引言 二、 数据源介绍 三、 数据清洗和预处理 3.1 缺失值处理 3.2 异常值处理 3.3 数据编码 四、 探索性数据分析 4.1 可视化相关统计量 4.2 目标数据的分布情况 4.3 Pearson 相关性分析 五、 特征工程 5.1 特征构造 5.1.1 总饮酒量 5.1.2 整体关…

【前端知识点】

虚拟 dom: 虚拟 dom 就是 vue 通过 js 对象渲染虚拟 dom 的,虚拟 dom 的 js 对象包含节点的类型、属性、子节点等信息,这些虚拟 dom 节点会构成一棵树形结构,用来表示整个页面的结构。 当 vue 组件更新时,会通过 diff…

牛客前端八股文(每日更新)

1.说说HTML语义化? 得分点:语义化标签、利于页面内容结构化、利于无CSS页面可读、利于SEO、利于代码可读 1,标签语义化是指在开发时尽可能使用有语义的标签,比如header,footer,h,p&#xff0c…

Linux学习之system V

目录 一,system V共享内存 快速认识接口 shmget(shared memory get) shmat(shared memory attach) shmdt(shared memory delete) shmctl (shared memory control) 编写代码 综上那么共享内存与管道通信有什么区别? system v消息队列 system v信号…

浅谈 Linux fork 函数

文章目录 前言fork 基本概念代码演示示例1:体会 fork 函数返回值的作用示例2:创建多进程,加深对 fork 函数的理解 前言 本篇介绍 fork 函数。 fork 基本概念 pid_t fork(void) fork 的英文含义是"分叉",在这里就是 …

web安全学习笔记【15】——信息打点(5)

信息打点-CDN绕过&业务部署&漏洞回链&接口探针&全网扫描&反向邮件 #知识点: 1、业务资产-应用类型分类 2、Web单域名获取-接口查询 3、Web子域名获取-解析枚举 4、Web架构资产-平台指纹识别 ------------------------------------ 1、开源-CMS指…

非线性优化资料整理

做课题看了一些非线性优化的资料,整理一下,以方便查看: 优化的中文博客 数值优化|笔记整理(8)——带约束优化:引入,梯度投影法 (附代码)QP求解器对比对于MPC的QP求解器 数值优化| 二次规划的…

day02_前后端环境搭建(前端工程搭建,登录功能说明,后端项目搭建)

文章目录 1. 软件开发介绍1.1 软件开发流程1.2 角色分工1.3 软件环境1.4 系统的分类 2. 尚品甄选项目介绍2.1 电商基本概念2.1.1 电商简介2.1.2 电商模式B2BB2CB2B2CC2BC2CO2O 2.2 业务功能介绍2.3 系统架构介绍2.4 前后端分离开发 3. 前端工程搭建3.1 Element-Admin简介3.2 El…

漫漫数学之旅034

文章目录 经典格言数学习题古今评注名人小传 - 大卫希尔伯特 经典格言 研究数学的艺术在于发现包含普遍性萌芽的特殊情形。——大卫希尔伯特(David Hilbert) 亲爱的朋友,让我们一起进入数学的奇幻世界,那里大卫希尔伯特就像一位智…

LightSNS V1.6.6.0版轻社区解锁版源码优化版

优化:后台面板首页数据统计改成异步加载 优化:同一内容重复评论提示 优化:vip到期个人主页vip专属背景还保留问题 优化:活动报名名额为空可能导致的问题 优化:移动端评论框左下“转发动态”改为“转发内容” 优化&…

【C++】树形关联式容器set、multiset、map和multimap的介绍与使用

👀樊梓慕:个人主页 🎥个人专栏:《C语言》《数据结构》《蓝桥杯试题》《LeetCode刷题笔记》《实训项目》《C》《Linux》《算法》 🌝每一个不曾起舞的日子,都是对生命的辜负 目录 前言 1.关联式容器 2.键…

Linux笔记--用户与用户组

Linux系统是一个多用户多任务的操作系统,任何一个要使用系统资源的用户,都必须首先向系统管理员(root)申请一个账号,然后以这个账号的身份进入系统。 用户的账号一方面可以帮助系统管理员对使用系统的用户进行跟踪,并控制他们对系…

python接口自动化测试 —— unittest框架suite、runner详细使用!

test suite 测试套件,理解成测试用例集一系列的测试用例,或测试套件,理解成测试用例的集合和测试套件的集合当运行测试套件时,则运行里面添加的所有测试用例 test runner 测试运行器用于执行和输出结果的组件 test suite、tes…

【前端素材】推荐优质后台管理系统Salreo平台模板(附源码)

一、需求分析 当我们从多个层次来详细分析后台管理系统时,可以将其功能和定义进一步细分,以便更好地理解其在不同方面的作用和实际运作。 1. 结构层次 在结构层次上,后台管理系统可以分为以下几个部分: a. 辅助功能模块&#…

PostgreSQL:开源巨人的崛起和不可阻挡的发展

PostgreSQL:开源巨人的崛起和不可阻挡的发展 PostgreSQL是一款开源的关系型数据库管理系统(RDBMS),以其强大的功能和持续的发展势头在数据库领域崭露头角。本文将探讨为什么PostgreSQL的发展势不可挡,从开源精神和强大…

GridView 演示(P28 5.4GridView)

一、目标效果 如下图所示,我们通过 GridView 新建100个子项,每个子项上写有自己的 index。 二、具体实现代码 1. Main.qml import QtQuickWindow {width: 640height: 480visible: truetitle: qsTr("GridView 演示")GridView{anchors.fill…