博主历时三年精心创作的《大数据平台架构与原型实现:数据中台建设实战》一书现已由知名IT图书品牌电子工业出版社博文视点出版发行,点击《重磅推荐:建大数据平台太难了!给我发个工程原型吧!》了解图书详情,京东购书链接:https://item.jd.com/12677623.html,扫描左侧二维码进入京东手机购书页面。 |
传统的关系模型和 SQL 最开始都是为了批式处理而设计的,当把一个关系型查询应用到流式处理上时,在实现和转换的过程中,会有很多和批处理场景非常不同的地方,典型的例子就是:为了实现 SQL 的某些语义,Flink 必须在流上维持状态,典型的代表就是:连接、聚合 、去重 这些操作,它们都是“状态算子”,本质原因还是因为:流处理的表是无界的,流式查询是持续不停的,所以在流上维持状态是必须的。
此外,我们应意识到:由于 Table API & SQL 程序是声明式的,管道会哪里维持状态以及状态如何被使用都是不明确的,就是说不能从 SQL 直接简单地推断出来,另外,Flink 还会对查询进行优化,尽可能地减少“状态”的使用。
下面是官方文档给出的一个状态算子的示例:
CREATE TABLE doc (
word STRING
) WITH (
'connector' = '...'
);
CREATE TABLE word_cnt (
word STRING PRIMARY KEY NOT ENFORCED,
cnt BIGINT
) WITH (
'connector' = '...'
);
INSERT INTO word_cnt
SELECT word, COUNT(1) AS cnt
FROM doc
GROUP BY word;
这里的聚合函数 count
就需要状态维持,同时又由于分组(group by
)的存在,要维持的状态数据就一下变多了,每一个单词都要独立维护一个对应的状态。下图是针对上面的查询语句“编译”(转换)出的流式程序的图解:
在这张详细的图解中,我们应该注意这些重点:
count
函数是一个状态算子,它的要维持状态数据,也就是每个单词的词频,这些状态数据又同时是下游的输入数据- 状态数据需要实时地推送到下游,状态数据的变更也是以 changelog 形式传导的,所以才会有
+U('hello', 2)
,-U('hello', 1)
这样的消息产生
除了 连接、聚合 、去重 这些显式的状态算子,还有一些“隐式”的状态算子,按官方文档的介绍是说:由优化器隐式推导出来的。这里面的实现机理暂时还不清楚,但是例子是非常典型的!我们在《Flink 实时数仓关键技术解读:Upsert Kafka 和 动态表(Dynamic Table)》这篇文章中曾经详细地解读过 upsert-kafka 作为 sink 时写入到 kafka 中的数据,当再次以这些数据作为 source 进行流式读取时,upsert-kafka 是能够完整推导出 changelog 数据的,利用的就是这里所谓的“隐式推导”能力,具体地说就是一个叫 ChangelogNormalize 的状态算子。
在持续运行的流上维持状态可能是一个成分非常大的操作,因为流是不会停止的,随着时间的推移和大量数据的涌入,状态数据可能会越积越多,导致内存挤爆。所以 Flink 提供了状态的 TTL 机制,当状态在一定时间内没有被更新后就会被自动移除,这个参数就是:table.exec.state.ttl
定义了状态的键在被更新后要保持多长时间才被移除。 在之前的查询例子中,word
的数目会在配置的时间内未更新时立刻被移除。
通过移除状态的键,连续查询会完全忘记它曾经见过这个键。如果一个状态带有曾被移除状态的键被处理了,这条记录将被认为是对应键的第一条记录。上述例子中意味着 cnt
会再次从 0
开始计数。
补充介绍:
管道 (Pipeline):Flink 文档中会反复出现这个名词,在 Flink 中,它指的是一个流式查询从 Source 到 Sink 的完整 DAG,中间是各种算子,简单地说就是:一个查询被“翻译”成一个流后的所有的处理环节。