深度学习目标检测】二十、基于深度学习的雾天行人车辆检测系统-含数据集、GUI和源码(python,yolov8)

雾天车辆行人检测在多种场景中扮演着至关重要的角色。以下是其作用的几个主要方面:

  1. 安全性提升:雾天能见度低,视线受阻,这使得驾驶者和行人在道路上的感知能力大大降低。通过车辆行人检测技术,可以在雾天条件下及时发现道路上的其他交通参与者,从而提前做出反应,避免潜在的危险,提升驾驶和行走的安全性。
  2. 辅助驾驶:在雾天,驾驶者往往难以准确判断前方道路的情况,包括其他车辆和行人的位置、速度和方向等。车辆行人检测技术可以提供这些关键信息,帮助驾驶者更好地了解道路状况,从而做出更准确的驾驶决策。
  3. 交通效率提升:在雾天条件下,交通往往容易受到影响,出现拥堵、事故等情况。通过车辆行人检测技术,可以及时发现并处理这些问题,从而保持交通的顺畅,提升交通效率。
  4. 自动驾驶技术的重要组成部分:随着自动驾驶技术的不断发展,车辆行人检测技术成为了其中的重要组成部分。在自动驾驶系统中,车辆需要能够准确感知周围环境的变化,包括其他车辆和行人的位置、速度和方向等。而雾天车辆行人检测技术可以帮助自动驾驶系统更好地应对恶劣天气条件,提高系统的可靠性和稳定性。

总的来说,雾天车辆行人检测技术在提升道路安全、辅助驾驶、提高交通效率以及推动自动驾驶技术的发展等方面都发挥着重要作用。

本文介绍了基于深度学习yolov8的雾天行人车辆检测系统,包括训练过程和数据准备过程,同时提供了推理的代码和GUI。对准备计算机视觉相关的毕业设计的同学有着一定的帮助。

检测结果如下图:

一、安装YoloV8

yolov8官方文档:主页 - Ultralytics YOLOv8 文档

安装部分参考:官方安装教程

1、安装pytorch

根据本机是否有GPU,安装适合自己的pytorch,如果需要训练自己的模型,建议使用GPU版本。

①GPU版本的pytorch安装

对于GPU用户,安装GPU版本的pytorch,首先在cmd命令行输入nvidia-smi,查看本机的cuda版本,如下图,我的cuda版本是12.4(如果版本过低,建议升级nvidia驱动):

打开pytorch官网,选择合适的版本安装pytorch,如下图,建议使用conda安装防止cuda版本问题出现报错:

②CPU版本pytorch安装

打开pytorch官网,选择CPU版本安装pytorch,如下图:

2、安装yolov8

在命令行使用如下命令安装:

pip install ultralytics

二、数据集准备

本项目的数据集为RTTS数据集,RTTS 数据集源自 RESIDE-β 数据集,包含 4322 张真实雾天图片,作为项目训练集,另外有 100 张真实场景图片作为验证集。

该数据集包含5各类别:

person/ car/ bus/ bicycle/ motorbike

数据集图片示例如下图所示:

为了使用yolov8进行训练,需要将数据集转为yolo格式,本文提供转换好的数据集连接:rtts-yolov8数据集

三、模型配置及训练

1、数据集配置文件

创建数据集配置文件ug.yaml,内容如下(将path路径替换为自己的数据集路径):

# Ultralytics YOLO 🚀, AGPL-3.0 license
# COCO 2017 dataset http://cocodataset.org by Microsoft
# Example usage: yolo train data=coco.yaml
# parent
# ├── ultralytics
# └── datasets
#     └── coco  ← downloads here (20.1 GB)
 
 
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: D:\DeepLearning\datasets\csdn\UG\UG_yolov8  # 替换为自己的数据集路径
train: images/train 
val: images/val 
test: images/val  
 
# Classes
names:
  # 0: normal
  0: person
  1: car
  2: bus
  3: bicycle
  4: motorbike

2、训练模型

使用如下命令训练模型,数据配置文件路径更改为自己的路径,model根据自己的需要使用yolov8n/s/l/x版本,其他参数根据自己的需要进行设置:

yolo detect train project=ug name=train exist_ok data=ug/ug.yaml model=yolov8n.yaml epochs=300 imgsz=640

3、验证模型

使用如下命令验证模型,相关路径根据需要修改:

yolo detect val imgsz=640 model=ug/train/weights/best.pt data=ug/ug.yaml

精度如下:

# Ultralytics YOLOv8.1.10 🚀 Python-3.9.18 torch-2.2.0 CUDA:0 (NVIDIA GeForce RTX 3060, 12288MiB)
# YOLOv8n summary (fused): 168 layers, 3006623 parameters, 0 gradients, 8.1 GFLOPs
# val: Scanning D:\DeepLearning\datasets\csdn\UG\UG_yolov8\labels\val.cache... 100 images, 0 backgrounds, 0 corrupt: 100%|██████████| 100/100 [00:00<?, ?it/s]
#                  Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 7/7 [00:07<00:00,  1.00s/it]
#                    all        100        773      0.735      0.448      0.544      0.308
#                 person        100        173      0.732       0.41      0.473      0.197
#                    car        100        479      0.793      0.658      0.744      0.458
#                    bus        100         49      0.679       0.49       0.65      0.393
#                bicycle        100         12      0.766      0.333      0.408      0.255
#              motorbike        100         60      0.706       0.35      0.444      0.236
# Speed: 1.7ms preprocess, 7.9ms inference, 0.0ms loss, 2.5ms postprocess per image
# Results saved to runs\detect\val3
# 💡 Learn more at https://docs.ultralytics.com/modes/val

四、推理

训练好了模型,可以使用如下代码实现推理,权重路径修改为自己的路径:

from PIL import Image
from ultralytics import YOLO
 
# 加载预训练的YOLOv8n模型
model = YOLO('best.pt')
 
image_path = 'test.jpg'
results = model(image_path)  # 结果列表
 
# 展示结果
for r in results:
    im_array = r.plot()  # 绘制包含预测结果的BGR numpy数组
    im = Image.fromarray(im_array[..., ::-1])  # RGB PIL图像
    im.show()  # 显示图像
    im.save('results.jpg')  # 保存图像

五、界面开发

使用pyqt5开发gui界面,支持图片、视频、摄像头输入,支持导出到指定路径,其GUI如下图(完整GUI代码可在下方链接下载):

代码下载连接:基于yolov8的雾天车辆行人检测系统,包含训练好的权重和推理代码,GUI界面,支持图片、视频、摄像头输入,支持检测结果导出

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/412734.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

振弦采集仪在桥梁岩土工程中的应用与效果评价

振弦采集仪在桥梁岩土工程中的应用与效果评价 河北稳控科技振弦采集仪是一种用于结构动力测试的仪器&#xff0c;也可以应用于桥梁和岩土工程中。其主要作用是通过测量结构的振动特性&#xff0c;分析结构的动态行为&#xff0c;评估结构的健康状况和性能。 在桥梁工程中&…

【非比较排序】计算排序算法

目录 CountSort计数排序 整体思想 图解分析 代码实现 时间复杂度&优缺分析 CountSort计数排序 计数排序是一种非比较排序&#xff0c;不需要像前面的排序一样去比较。 计数排序的特性总结&#xff1a; 1. 计数排序在数据范围集中时&#xff0c;效率很高&#xff0c;但…

【element+vue】点击加号增加一行,点击减号删除一行

代码实现&#xff1a; 页面部分&#xff1a; vueelement 备注&#xff1a;v-if “i>0” &#xff08;保证第一行不出现减号&#xff09; <div v-for"(item,i) in studentList"><el-form-item label"学生:" prop"name"><el-i…

基于Java SSM框架实现家庭食谱管理系统项目【项目源码+论文说明】计算机毕业设计

基于java的SSM框架实现家庭食谱管理系统演示 摘要 本论文主要论述了如何使用JAVA语言开发一个家庭食谱管理系统 &#xff0c;本系统将严格按照软件开发流程进行各个阶段的工作&#xff0c;采用B/S架构&#xff0c;面向对象编程思想进行项目开发。在引言中&#xff0c;作者将论…

智慧公厕:打造智慧城市环境卫生新标杆

随着科技的不断发展和城市化进程的加速推进&#xff0c;智慧城市建设已经成为各地政府和企业关注的焦点。而作为智慧城市环境卫生管理的基础设施&#xff0c;智慧公厕的建设和发展也备受重视&#xff0c;被誉为智慧城市的新标杆。本文以智慧公厕源头厂家广州中期科技有限公司&a…

Ubuntu22.04环境下载安装中文搜狗输入法

0、查看CPU系统架构 确定架构后&#xff0c;下载对应的安装包&#xff0c;否则无法正常安装应用程序 1、进入搜狗拼音输入法官网&#xff0c;下载搜狗输入法 搜狗输入法-首页搜狗拼音输入法官网下载&#xff0c;荣获多个国内软件大奖的搜狗拼音输入法是一款打字更准、词库更大…

2024年【安全员-A证】考试及安全员-A证模拟考试

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 安全员-A证考试根据新安全员-A证考试大纲要求&#xff0c;安全生产模拟考试一点通将安全员-A证模拟考试试题进行汇编&#xff0c;组成一套安全员-A证全真模拟考试试题&#xff0c;学员可通过安全员-A证模拟考试全真模…

【Python数据分析系列】多个dataframe写入同一个excel文件(案例源码)

一、引言 将多个DataFrame写入同一个excel文件中&#xff0c;每个DataFrame作为一个sheet&#xff0c;可以使用pandas库中的ExcelWriter类。这个类可以在一个Excel文件中创建多个sheet&#xff0c;并将不同的数据写入这些sheet中。本文演示如何将多个DataFrame写入同一个CSV文件…

抖音视频评论抓取软件|视频批量下载

抖音视频评论采集软件是一款基于C#开发的高效、便捷的工具&#xff0c;旨在为用户提供全面的数据采集和分析服务。该软件不仅支持通过关键词进行搜索抓取&#xff0c;还能够通过分享链接进行单个视频的抓取和下载&#xff0c;让用户轻松获取抖音视频评论数据。 &#x1f50d; …

uniapp 安卓GPS定位原生插件

插件介绍 安卓GPS定位插件&#xff0c;支持获取定位权限&#xff0c;获取上一次的定位信息&#xff0c;持续定位监听&#xff0c;取消定位监听&#xff0c;可返回详细街道信息 插件地址 安卓GPS定位插件&#xff0c;支持持续定位监听&#xff0c;支持返回详细街道信息 - DCl…

springboot003图书个性化推荐系统的设计与实现(源码+调试+LW)

项目描述 临近学期结束&#xff0c;还是毕业设计&#xff0c;你还在做java程序网络编程&#xff0c;期末作业&#xff0c;老师的作业要求觉得大了吗?不知道毕业设计该怎么办?网页功能的数量是否太多?没有合适的类型或系统?等等。今天给大家介绍一篇基于SpringBoot的图书个…

web安全学习笔记【17】——信息打点(7)

信息打点-APP资产&知识产权&应用监控&静态提取&动态抓包&动态调试 #知识点&#xff1a; 1、业务资产-应用类型分类 2、Web单域名获取-接口查询 3、Web子域名获取-解析枚举 4、Web架构资产-平台指纹识别 ------------------------------------ 1、开源-CMS指…

切比雪夫(最小区域法)球拟合算法

欢迎关注更多精彩 关注我&#xff0c;学习常用算法与数据结构&#xff0c;一题多解&#xff0c;降维打击。 本期话题&#xff1a;切比雪夫&#xff08;最小区域法&#xff09;球拟合算法 相关背景和理论 点击前往 主要介绍了应用背景和如何转化成线性规划问题 球拟合输入和输…

【Python笔记-设计模式】命令模式

一、说明 命令模式是一种行为设计模式&#xff0c;旨在对命令的封装&#xff0c;根据不同的请求将方法参数化、延迟请求执行或将其放入队列中&#xff0c;且能实现可撤销操作。 (一) 解决问题 将请求发送者和接受者解耦&#xff0c;请求发送者只需知道如何发送请求&#xff…

【力扣hot100】刷题笔记Day14

前言 又是新的一周&#xff0c;快乐的周一&#xff0c;快乐地刷题&#xff0c;今天把链表搞完再干活&#xff01; 114. 二叉树展开为链表 - 力扣&#xff08;LeetCode&#xff09; 前序遍历 class Solution:def flatten(self, root: Optional[TreeNode]) -> None:if not r…

Ubontu更换软件包源库来提高下载速度

对于 apt-get update 运行缓慢的问题&#xff0c;您可以尝试更换软件包源库来提高下载速度。在 Debian 系统中&#xff0c;可以通过编辑 /etc/apt/sources.list 文件来更改软件包源 1、打开 /etc/apt/sources.list 文件&#xff1a;使用文本编辑器&#xff08;例如 vi、nano 或…

Linux使用Docker部署Traefik容器并实现远程访问管理界面

文章目录 一、Zotero安装教程二、群晖NAS WebDAV设置三、Zotero设置四、使用公网地址同步Zotero文献库五、使用永久固定公网地址同步Zotero文献库 Zotero 是一款全能型 文献管理器,可以 存储、管理和引用文献&#xff0c;不但免费&#xff0c;功能还很强大实用。 ​ Zotero 支…

React Hooks概述及常用的React Hooks介绍

Hook可以让你在不编写class的情况下使用state以及其他React特性 useState ● useState就是一个Hook ● 通过在函数组件里调用它来给组件添加一些内部state,React会在重复渲染时保留这个state 纯函数组件没有状态&#xff0c;useState()用于设置和使用组件的状态属性。语法如下…

StarRocks之监控管理(内含DashBoard模板)

先看下最终效果图 架构 Prometheus 是一个拥有多维度数据模型的、灵活的查询语句的时序数据库。它可以通过 Pull 或 Push 采集被监控系统的监控项,存入自身的时序数据库中。并且通过丰富的多维数据查询语言,满足用户的不同需求。 Grafana 是一个开源的 Metric 分析及可视化系…

springboot-基础-添加model和controller的简单例子+常用注解含义

备份笔记。所有代码都是2019年测试通过的&#xff0c;如有问题请自行搜索解决&#xff01; 上一篇&#xff1a;springboot-基础-eclipse配置helloword示例 目录 添加model和controller的例子注解开发使用RestController 大坑 添加model和controller的例子 文件结构&#xff1…