C++ list详解以及模拟实现

目录

1.list的使用

1.1list的定义

1.2list的使用

1.3list iterator使用

1.4list capacity

1.5list element access

1.6list增删查改

2.list迭代器失效问题

 3.list的模拟实现


1.list的使用

1.1list的定义

1. list是可以在常数范围内在任意位置进行插入和删除的序列式容器,并且该容器可以前后双向迭代。

2. list的底层是双向链表结构,双向链表中每个元素存储在互不相关的独立节点中,在节点中通过指针指向其前一个元素和后一个元素。

3. list与forward_list非常相似:最主要的不同在于forward_list是单链表,只能朝前迭代,已让其更简单高效。

4. 与其他的序列式容器相比(array,vector,deque),list通常在任意位置进行插入、移除元素的执行效率更好。

5. 与其他序列式容器相比,list和forward_list最大的缺陷是不支持任意位置的随机访问,比如:要访问list的第6个元素,必须从已知的位置(比如头部或者尾部)迭代到该位置,在这段位置上迭代需要线性的时间开销;list还需要一些额外的空间,以保存每个节点的相关联信息(对于存储类型较小元素的大list来说这可能是一个重要的因素)

1.2list的使用

构造函数结构说明
list(size_type n,const value_type& val=value_type())构造的list中包含n个值为val的元素
list()构造空的list

list(const list&x)

拷贝构造函数
list(InputIterator first,InputIterator last)用[first,last)区间中的元素构造list

1.3list iterator使用

函数声明接口声明
begin+end返回第一个元素的迭代器+返回最后一个元素的下一个位置的迭代器
rbegin+rend返回第一个元素reverse_iterator,即end的位置+返回最后一个元素下一个位置的reverse_iterator,即begin的位置

需要注意的是:

1.begin与end为正向迭代器,对迭代器执行++操作,迭代器向后移动

2.rbegin(end)与rend(begin)为反向迭代器,对迭代器执行++操作,迭代器向前移动

1.4list capacity

函数声明接口说明
empty检查list是否为空,为空返回true,不为空返回false
size返回list中有效节点的个数

1.5list element access

函数声明接口说明
front返回list的第一个节点中值的引用
back返回list的最后一个节点中值的引用

1.6list增删查改

函数声明接口声明
push_front在list首元素前插入值为val的元素

pop_front

删除list中第一个元素
push_back

在list尾部插入值为val的元素

pop_back删除list中最后一个元素
insert在list position位置中插入值为val的元素
erase删除list position位置的元素
swap交换两个list中的元素
clear清空list中的有效元素

2.list迭代器失效问题

与string和vector相似,list的迭代器也会出现失效的问题

#include<iostream>
#include<list>
using namespace std;
int main()
{
		int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };
		list<int> l(array, array + sizeof(array) / sizeof(array[0]));
		auto it = l.begin();
		while (it != l.end())
		{
		
				l.erase(it);
			++it;
		}
}

下面是正确的使用方式,每次都更正一下迭代器it指向的结点位置。

void TestListIterator()
{
int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };
list<int> l(array, array+sizeof(array)/sizeof(array[0]));
auto it = l.begin();
while (it != l.end())
{
l.erase(it++); // it = l.erase(it);
}
}

 3.list的模拟实现

#pragma once
#include<assert.h>

namespace mylist
{
	template<class T>
	struct ListNode
	{
		ListNode<T>* _next;
		ListNode<T>* _prev;
		T _data;

		ListNode(const T& x = T())
			:_next(nullptr)
			,_prev(nullptr)
			,_data(x)
		{}
	};

	template<class T>
	struct __list_iterator
	{
		typedef ListNode<T> Node;
		typedef __list_iterator<T> self;
		Node* _node;

		__list_iterator(Node* x)
			:_node(x)
		{}

		// ++it
		self& operator++()
		{
			_node = _node->_next;
			return *this;
		}

		// it++
		self operator++(int)
		{
			//__list_iterator<T> tmp(*this);
			self tmp(*this);

			_node = _node->_next;

			return tmp;
		}

		self& operator--()
		{
			_node = _node->_prev;
			return *this;
		}

		self operator--(int);

		T& operator*()
		{
			return _node->_data;
		}

		bool operator!=(const self& s)
		{
			return _node != s._node;
		}

		bool operator==(const self& s);
	};

	template<class T>
	class list
	{
		typedef ListNode<T> Node;
	public:
		typedef __list_iterator<T> iterator;

		iterator begin()
		{
			//return iterator(_head->_next);
			return _head->_next;
		}

		iterator end()
		{
			return _head;
		}

		void empty_init()
		{
			_head = new Node;
			_head->_next = _head;
			_head->_prev = _head;
		}

		list()
		{
			empty_init();
		}

		void clear()
		{
			iterator it = begin();
			while (it != end())
			{
				it = erase(it);
			}
		}

		~list()
		{
			clear();

			delete _head;
			_head = nullptr;
		}

		//list(const list<T>& lt)
		list(list<T>& lt)
		{
			empty_init();

			for (const auto& e : lt)
			{
				push_back(e);
			}
		}

		// lt1 = lt2;
		// list<T>& operator=(const list<T>& lt)
		/*list<T>& operator=(list<T>& lt)
		{
			if (this != &lt)
			{
				clear();
				for (const auto& e : lt)
				{
					push_back(e);
				}
			}
			return *this;
		}*/

		void swap(list<T>& tmp)
		{
			std::swap(_head, tmp._head);
		}

		//list& operator=(list lt)
		list<T>& operator=(list<T> lt)
		{
			swap(lt);
			return *this;
		}

		void push_back(const T& x)
		{
			/*Node* newnode = new Node(x);
			Node* tail = _head->_prev;

			tail->_next = newnode;
			newnode->_prev = tail;
			newnode->_next = _head;
			_head->_prev = newnode;*/

			insert(end(), x);
		}

		void push_front(const T& x)
		{
			insert(begin(), x);
		}

		void pop_back()
		{
			erase(--end());
		}

		void pop_front()
		{
			erase(begin());
		}

		// vector insert会导致迭代器失效
		// list会不会?不会
		iterator insert(iterator pos, const T& x)
		{
			Node* cur = pos._node;
			Node* prev = cur->_prev;
			Node* newnode = new Node(x);

			// prev newnode cur
			prev->_next = newnode;
			newnode->_prev = prev;
			newnode->_next = cur;
			cur->_prev = newnode;

			//return iterator(newnode);
			return newnode;
		}

		iterator erase(iterator pos)
		{
			assert(pos != end());

			Node* cur = pos._node;
			Node* prev = cur->_prev;
			Node* next = cur->_next;
			prev->_next = next;
			next->_prev = prev;

			delete cur;

			return next;
		}

	private:
		Node* _head;
	};

	void test_list1()
	{
		list<int> lt;
		lt.push_back(1);
		lt.push_back(2);
		lt.push_back(3);
		lt.push_back(4);

		list<int>::iterator it = lt.begin();
		while (it != lt.end())
		{
			//*it += 10;

			cout << *it << " ";
			++it;
		}
		cout << endl;

		for (auto e : lt)
		{
			cout << e << " ";
		}
		cout << endl;
	}

	void test_list2()
	{
		list<int> lt;
		lt.push_back(1);
		lt.push_back(2);
		lt.push_back(3);
		lt.push_back(4);


		for (auto e : lt)
		{
			cout << e << " ";
		}
		cout << endl;

		lt.push_back(5);
		lt.push_front(0);

		for (auto e : lt)
		{
			cout << e << " ";
		}
		cout << endl;

		lt.pop_back();
		lt.pop_front();

		for (auto e : lt)
		{
			cout << e << " ";
		}
		cout << endl;

		lt.clear();

		for (auto e : lt)
		{
			cout << e << " ";
		}
		cout << endl;

		lt.push_back(10);
		lt.push_back(20);

		for (auto e : lt)
		{
			cout << e << " ";
		}
		cout << endl;
	}

	void test_list3()
	{
		list<int> lt;
		lt.push_back(1);
		lt.push_back(2);
		lt.push_back(3);
		lt.push_back(4);

		for (auto e : lt)
		{
			cout << e << " ";
		}
		cout << endl;

		list<int> copy(lt);
		for (auto e : copy)
		{
			cout << e << " ";
		}
		cout << endl;

		list<int> lt1;
		lt1.push_back(10);
		lt1.push_back(20);
		lt1.push_back(30);
		lt1.push_back(40);

		lt = lt1;
		for (auto e : copy)
		{
			cout << e << " ";
		}
		cout << endl;
	}
}

 4.list和vector的对比

vectorlist
底层结构动态顺序表,一段连续空间带头结点的双向循环链表
随机访问支持随机访问,访问某个元素效率O(1)不支持随机访问,访问某个元素效率O(N)
插入和删除任意位置插入和删除效率低,需要搬移元素时间复杂度为O(N),插入时有可能需要增容,增容:开辟新空间,拷贝元素,释放旧空间,会导致效率降低,任意位置插入和删除效率高,不需要搬移元素,时间复杂度为O(1);
空间利用率底层为连续空间,不容易造成内存碎片,空间利用率高,缓存利用率高底层节点动态开辟,小节点容易造成内存碎片,空间利用率低,缓存利用率低
迭代器原生指针对原生指针(节点指针)进行封装
迭代器失效在插入元素时,要给所有的迭代器重新赋值,因为插入元素有可能会导致重新扩容,致使原来迭代器失效,删除时,当前迭代器需要重新赋值否则会失效插入元素不会导致迭代器失效,删除元素时,只会导致当前迭代器失效,其他迭代器不受影响
使用场景需要高效存储,支持随机访问,不关心插入删除效率大量插入和删除操作,不关心随机访问

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/412013.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

水印相机小程序源码

水印相机前端源码&#xff0c;本程序无需后端&#xff0c;前端直接导入即可&#xff0c;没有添加流量主功能&#xff0c;大家开通后自行添加 源码搜索&#xff1a;源码软件库 注意小程序后台的隐私权限设置&#xff0c;前端需要授权才可使用 真实时间地址拍照记录&#xff0c…

alembic

alembic是sqlalchemy的作者开发的。 用来做OMR模型与数据库的迁移与映射。 第一个&#xff0c;alembic的所有命令都是以alembic开头 第二&#xff0c;alembic的迁移文件也是通过版本进行控制的。首先&#xff0c;通过pip install alembic进行安装。以下将解释alembic的用法 方…

从管易云·奇门到金蝶云星空通过接口配置打通数据

从管易云奇门到金蝶云星空通过接口配置打通数据 对接源平台:管易云奇门 管易云是金蝶旗下专注提供电商企业管理软件服务的子品牌&#xff0c;先后开发了C-ERP、EC-OMS、EC-WMS、E店管家、BBC、B2B、B2C商城网站建设等产品和服务&#xff0c;涵盖电商业务全流程。 目标系统:金蝶…

ZYNQ:串口-CAN协议转换

前言 目前已经实现zynq的PS-CAN和PL-CAN功能。串口-CAN协议转换是实现以太网-CAN功能的过渡&#xff0c;通过这个流程能够减少后期以太网工程出现问题的频率。阶段性功能目标如下&#xff1a; 实现数据在CAN调试助手和串口调试助手之间的来回转换&#xff0c;从而了解中断机制…

Vue前端对请假模块——请假开始时间和请假结束时间的校验处理

开发背景&#xff1a;Vueelement组件开发 业务需求&#xff1a;用户提交请假申请单&#xff0c;请假申请的业务逻辑处理 实现&#xff1a;用户选择开始时间需要大于本地时间&#xff0c;不得大于请假结束时间&#xff0c;请假时长根据每日工作时间实现累加计算 页面布局 在前…

【Excel PDF 系列】EasyExcel + iText 库

你知道的越多&#xff0c;你不知道的越多 点赞再看&#xff0c;养成习惯 如果您有疑问或者见解&#xff0c;欢迎指教&#xff1a; 企鹅&#xff1a;869192208 文章目录 前言转换前后效果引入 pom 配置代码实现定义 ExcelDataVo 对象主方法EasyExcel 监听器 前言 最近遇到生成 …

SQL进阶(三):Join 小技巧:提升数据的处理速度

复杂数据结构处理&#xff1a;Join 小技巧&#xff1a;提升数据的处理速度 本文是在原本sql闯关的基础上总结得来&#xff0c;加入了自己的理解以及疑问解答&#xff08;by GPT4&#xff09; 原活动链接 用到的数据&#xff1a;链接 提取码&#xff1a;l03e 目录 1. 课前小问…

动态规划之第 N 个泰波那契数/三步问题【leetCode】【算法】

动态规划动态规划之第 N 个泰波那契数/三步问题 动态规划LeetCode题目第 N 个泰波那契数求解1求解2&#xff08;滚动数组&#xff09; 三步问题求解1求解2&#xff08;滚动数组&#xff09; 动态规划 如果问题是由重叠的子问题构成的&#xff0c;那就可以用动态规划&#xff08…

JSON简介以及如何在Python中使用JSON

什么是JSON&#xff1f; JSON是"JavaScript Object Notation"的简称&#xff0c;是一种数据交换格式 JSON格式 假设我们有一个对象&#xff0c;这个对象有两个属性&#xff1a;“name”跟“age”。 在JSON中是这样表达的&#xff1a; { "name":"男孩…

【 C++ 】闭散列哈希表的模拟实现

哈希节点状态 我们都很清楚数组里的每一个值无非三种状态&#xff1a; 如果某下标没有值&#xff0c;则代表空EMPTY。如果有值在代表存在EXIST。如果此位置的值被删掉了&#xff0c;则表示为DELETE。 而这三种状态我们可以借助enum枚举来帮助我们表示数组里每个位置的状态。…

RK3568平台开发系列讲解(基础篇)如何快速学习一套 Linux开发板源码

🚀返回专栏总目录 文章目录 一、基础代码二、驱动代码沉淀、分享、成长,让自己和他人都能有所收获!😄 拿到一份源码和一块评估板,如何快速找到与这块板相关的源码,是很多研发人员都曾遇到过的问题。如果对内核源码结构有大概了解,要完成这些事情也不难,通常可按照基础…

ASLR 和 PIE

前言 ASLR&#xff08;Address Space Layout Randomization&#xff0c;地址空间随机化&#xff09;是一种内存攻击缓解技术&#xff0c;是一种操作系统用来抵御缓冲区溢出攻击的内存保护机制。这种技术使得系统上运行的进程的内存地址无法被预测&#xff0c;使得与这些进程有…

高性能 Kafka 及常见面试题

Kafka 是一种分布式的&#xff0c;基于发布/订阅的消息系统&#xff0c;原本开发自 LinkedIn&#xff0c;用作 LinkedIn 的事件流&#xff08;Event Stream&#xff09;和运营数据处理管道&#xff08;Pipeline&#xff09;的基础。 基础原理详解可见 Kafka 基本架构及原理 基础…

事件循环解析

浏览器的进程模型 何为进程&#xff1f; 程序运行需要有它自己专属的内存空间&#xff0c;可以把这块内存空间简单的理解为进程 每个应用至少有一个进程&#xff0c;进程之间相互独立&#xff0c;即使要通信&#xff0c;也需要双方同意。 何为线程&#xff1f; 有了进程后&…

Java根据excel模版导出Excel(easyexcel、poi)——含项目测试例子拿来即用

Java根据excel模版导出Excel&#xff08;easyexcel、poi&#xff09;——含项目测试例子拿来即用 1. 前言1.1 关于Excel的一般导出2.2 关于easyexcel的根据模版导出 2. 先看效果2.1 模版2.2 效果 3. 代码实现&#xff08;核心代码&#xff09;3.1 项目代码结构3.2 静态填充例子…

全域增长方法论:帮助品牌实现科学经营,助力长效生意增长

前两年由于疫情反复、供给需求收缩等条件制约&#xff0c;品牌业务均受到不同程度的影响。以双十一和618电商大促为例&#xff0c;就相比往年颇显“惨淡”&#xff0c;大多品牌营销都无法达到理想预期。 随着市场环境不断开放&#xff0c;2023年营销行业开始从低迷期走上了高速…

RPA中国 x UiPath | 第六届RPA极客挑战赛,3月16日上海开赛!

随着人工智能技术的不断进步以及数字化转型的深入&#xff0c;企业对于高效、精准、自动化的业务流程需求日益迫切。RPA技术作为连接人类工作与机器操作的桥梁&#xff0c;正逐渐从规则驱动发展为智能决策的助手。 由RPA中国联合UiPath共同主办的【第六届RPA极客挑战赛】将于2…

高性能API云原生网关 APISIX安装与配置指南

Apache APISIX是Apache软件基金会下的顶级项目&#xff0c;由API7.ai开发并捐赠。它是一个高性能的云原生API网关&#xff0c;具有动态、实时等特点。 APISIX网关可作为所有业务的流量入口&#xff0c;为用户提供了丰富的功能&#xff0c;包括动态路由、动态上游、动态证书、A…

【LeetCode每日一题】938. 二叉搜索树的范围和

2024-2-26 文章目录 [938. 二叉搜索树的范围和](https://leetcode.cn/problems/range-sum-of-bst/)思路&#xff1a;写法一&#xff1a;在中间累加写法二&#xff1a;在最后累加 938. 二叉搜索树的范围和 思路&#xff1a; 1.在二叉搜索树中&#xff1a;左子树的结点都小于根节…

【Excel PDF 系列】POI + iText 库实现 Excel 转换 PDF

你知道的越多&#xff0c;你不知道的越多 点赞再看&#xff0c;养成习惯 如果您有疑问或者见解&#xff0c;欢迎指教&#xff1a; 企鹅&#xff1a;869192208 文章目录 前言转换前后效果引入 pom 配置代码实现 前言 最近遇到生成 Excel 并转 pdf 的需求&#xff0c;磕磕碰碰总…