随机分布模型

目录

前言

一、离散型随机变量

         1.1 0-1分布

1.2 二项分布

1.3 帕斯卡分布

1.4 几何分布

1.5 超几何分布

1.6 泊松分布

二、连续型随机变量

2.1 均匀分布

2.2 指数分布

2.3 高斯分布/正态分布

2.4 分布(抽样分布)

2.5 t分布(抽样分布)

2.6 F分布(抽样分布)

2.7 分布

2.8 瑞利分布

2.9 莱斯分布

2.10 韦布尔分布

2.11 分布

2.12 对数正态分布

2.13 柯西分布

三、性质及定理

3.1、均值性质

3.2、方差性质

3.3、定理

总结


前言

         本文首先结合自身研究经验,在前言部分简单叙述自己对随机概念的理解,描述可能不是很专业,仅供参考。正文部分重点描述常见的离散型随机变量以及连续性随机变量的分布类型,这部分参考各方资料,如果问题,欢迎评论区具体指出。

        个人认为目前随机概念更多的是对结果的描述,人们往往容易忽略产生这种随机结果的原因。以抛骰子为例,普遍认为,如果随机抛出骰子,每次投出结果是不同的,我们把这种输出结果看似随机的现象认为是随机事件。

        事实上,抛骰子可以认为是一种相当复杂的物理过程,其结果受抛出骰子时,手对骰子的力,所处环境中的重力,骰子飞行过程受到的阻力以及骰子碰撞地面的受力情况等诸多因素的影响。我们尝试对抛骰子这样一个物理过程进行精准建模,在抛骰子过程中,如果我们能够弄清楚影响骰子结果的所有要素,并且也能在投骰子过程精确的保证所有要素在每次实验都能一致,是否意味着每次实验结果都能惊人的一致。

       问题是对抛骰子过程的建模是非常困难的,一方面整个物理过程影响要素很多,碰撞方面机理或许不是完全清楚,另一方面,很难保证抛骰子的力度以及角度完全确定。因此,目前的研究是将其作为一个黑盒子模型进行研究,模型输入是随机抛出骰子,投出骰子的状态、使出的力度、投出的角度凭借试验者的经验进行,这样就可以对模型输出的结果进行研究,并基于概率统计原理对结果进行分析。

       由于结果随机出现的特性,投骰子被运用到赌博上,一些人为了得到想要的结果上,一方面,有些人可能会在大量投骰子训练过程中找到投出特定点数的手感,以此大幅提高投出特定点数的概率;另一方面,有些人会对骰子进行改造,如改变骰子重心(利用重心越低,物理状态越稳定的规律),使其投出特定点数的概率大大提升。

      上述论述多是自己的遐想,感兴趣的读者可以以此来对随机概念进行新的思考。有些随机过程并不像投骰子那样可以轻易改变分布类型,如接收机中的热噪声,或者说产生各种随机现象的机理并不容易研究,而我们又急需从随机的结果中获取所需的信息(个人感觉有点像现在的人工智能,机器学习),因此,人们巧妙的避开机理上的问题,用统计结果的分布特点来描述整个过程,利用少数的统计参量依概率描述复杂的模型准确性。为了更加严谨描述随机现象,随机结果用随机变量描述,并根据结果特点分为离散型随机变量和连续性随机变量,下面简单介绍。


一、离散型随机变量

1.1 0-1分布

         0-1分布又称两点分布或伯努利( Bernoulli)分布,试验结果只有两个(如成功、失败)。设随机变量X 只取 0或 1两个值,它的分布律为

P\left \{ X=k \right \}=p^{k}(1-p)^{1-k}\, \, \, \, \, \, \, \, \, \, \, k=0,1

          则称随机变量 X 服从参数为 p的(0 —1)分布,记作X\sim b\left ( 1,p \right )

均值

E\left ( X \right )=\sum_{k=0}^{1}kp^{k}(1-p)^{1-k}=p

方差

D\left ( X \right )=E\left [ \left ( X-E\left ( X \right ) \right )^{2} \right ]=\sum_{k=0}^{1}\left (k-p \right )^{2}p^{k}(1-p)^{1-k}=p\left ( 1-p \right )

1.2 二项分布

       重复地进行 n  次独立伯努利试验(“重复”  是指这个试验中各次试验条件相同,“独立”是指各次试验的结果互不影响),结果为1的试验次数服从二项分布。设随机变量X 的所有可能值为0, 1, 2,… ,n, 其分布律为

P\left ( X=k \right )=C_{n}^{k}p^{k}(1-p)^{n-k}\, \, \, \, \, \, \, \, \, \, \, k=0,1,\cdots ,n

       则称随机变量 X 服从参数为 p的(0 —1)分布,记作X\sim b\left ( n,p \right )

均值

E\left ( X \right )=\sum_{k=0}^{n}kC_{n}^{k}p^{k}(1-p)^{n-k}=np\sum_{k=1}^{n}kC_{n-1}^{k-1}p^{k-1}(1-p)^{n-k}=np

方差

E\left ( X^{2} \right )=E\left [ X\left ( X-1 \right ) \right ]+E\left ( X \right )\\=\sum_{k=0}^{n}k\left ( k-1 \right )C_{n}^{k}p^{k}(1-p)^{n-k}+np\\=n\left ( n-1 \right )p^{2}\sum_{k=2}^{n}C_{n-2}^{k-2}p^{k-2}(1-p)^{n-k}+np\\=n\left ( n-1 \right )p^{2}+np

D\left ( X \right ) =E\left ( X^{2} \right )-\left [ E\left ( X \right ) \right ]^{2}=np\left ( 1-p \right )

1.3 帕斯卡分布

        在重复、独立的伯努利试验,设每次试验成功的概率为p,失败的概率为q= 1- p,若将试验进行到出现r(r为常数)次成功为止,以随机变量X表示所需试验次数,则 X是离散型随机变量, 其分布律为为:

P\left ( X=k \right )=C_{k-1}^{r-1}p^{r}(1-p)^{k-r}\, \, \, \, \, \, \, \, \, \, \, k=r,r+1,\cdots

则称随机变量 X 服从参数为 p,r的几何分布,记作X\sim NB\left ( r,p \right )

均值

E\left ( X \right )=\sum_{k=0}^{n}kC_{k-1}^{r-1}p^{r}(1-p)^{k-r}=\frac{r}{p}

方差

D\left ( X \right )=E\left [ \left ( X-E\left ( X \right ) \right )^{2} \right ]=\frac{r\left ( 1-p \right )}{p^{2}}

1.4 几何分布

        重复进行随机事件,直到事件发生为止才停下,X 为首次发生时共做的事件的次数。设随机变量X 的所有可能值为1, 2,… , 其分布律为

P\left ( X=k \right )=p(1-p)^{k-1}\, \, \, \, \, \, \, \, \, \, \, k=1,2,\cdots

则称随机变量 X 服从参数为 p的几何分布,记作X\sim GE\left ( n,p \right )

均值

E\left ( X \right ) =\sum_{k=1}^{\infty }kp(1-p)^{k-1}=p\sum_{k=1}^{\infty }k(1-p)^{k-1}=p\frac{1}{p^{2}}=\frac{1}{p}

方差

E\left ( X^{2} \right )=\sum_{k=0}^{\infty }k^{2}p(1-p)^{k-1}=\frac{1+q}{p^{2}}

D\left ( X \right ) =E\left ( X^{2} \right )-\left [ E\left ( X \right ) \right ]^{2}=\frac{1-p}{p^{2}}

1.5 超几何分布

          N 个产品,其中 M 个次品,从中任取 n 个。 X 为这 n 个中的次品数,则 X∼H(n,M,N) 。分布律为:

P\left ( X=k \right )=\frac{C_{M}^{k}C_{N-M}^{n-k}}{C_{N}^{n}}\, \, \, \, \, \, \, \, \, \, \, k=0,1,\cdots,M

均值

E\left ( X \right )=\sum_{k=0}^{n}kC_{k-1}^{r-1}p^{r}(1-p)^{k-r}=n\frac{M}{N}

方差

D\left ( X \right )=E\left [ \left ( X-E\left ( X \right ) \right )^{2} \right ]=\frac{nM}{N}\frac{N-M}{N}\frac{N-n}{N-1}

1.6 泊松分布

设随机变量X 的所有可能值为0, 1, 2,… , 其分布律为

P\left ( X=k \right )=\frac{\lambda ^{k}}{k!}e^{-\lambda }\, \, \, \, \, \, \, \, \, \, \, k=0,1,\cdots

其中\lambda >0是常数,则称X 服从参数为\lambda的泊松分布,记作X\sim \pi\left ( \lambda \right )

均值

E\left ( X \right ) =\sum_{k=0}^{\infty }k\frac{\lambda ^{k}}{k!}e^{-\lambda }=\lambda\sum_{k=1}^{\infty }\frac{\lambda ^{k-1}}{\left ( k-1 \right )!}e^{-\lambda }=\lambda

方差

E\left ( X^{2} \right )=E\left [ X\left ( X-1 \right ) \right ]+E\left ( X \right )\\=\sum_{k=0}^{\infty }k\left ( k-1 \right )\frac{\lambda ^{k}}{k!}e^{-\lambda }+\lambda\\=\lambda^{2}e^{-\lambda }\sum_{k=2}^{\infty }\frac{\lambda ^{k-2}}{\left ( k-2 \right )!}+\lambda\\=\lambda^{2}+\lambda

D\left ( X \right ) =E\left ( X^{2} \right )-\left [ E\left ( X \right ) \right ]^{2}=\lambda

二、连续型随机变量

2.1 均匀分布

概率密度函数

f\left ( x \right )=\left\{\begin{matrix} \frac{1}{b-a} & x\in \left ( a,b \right )\\ 0 & else \end{matrix}\right.

均值

E\left ( X \right ) =\int_{-\infty }^{\infty }xf\left ( x \right )dx=\frac{a+b}{2}

方差

E\left ( X^{2} \right ) =\int_{-\infty }^{\infty }x^{2}f\left ( x \right )dx=\frac{a^{2}+ab+b^{2}}{3}

D\left ( X \right ) =E\left ( X^{2} \right )-\left [ E\left ( X \right ) \right ]^{2}=\frac{\left ( b-a \right )^{2}}{12}

2.2 指数分布

概率密度函数

f\left ( x \right )=\lambda e^{-\lambda x}\, \, \, \, \, \, \, \, \, \, x>0

均值

E\left ( X \right ) =\int_{-\infty }^{\infty }x\lambda e^{-\lambda x}dx=\frac{1}{\lambda }

方差

E\left ( X^{2} \right ) =\int_{-\infty }^{\infty }x^{2}f\left ( x \right )dx=\frac{2}{\lambda ^{2}}

D\left ( X \right ) =E\left ( X^{2} \right )-\left [ E\left ( X \right ) \right ]^{2}=\frac{1}{\lambda ^{2}}

2.3 高斯分布/正态分布

概率密度函数

f\left ( x \right )=\frac{1}{\sqrt{2\pi \sigma ^{2}}} e^{-\frac{\left ( x-\mu \right )}{2\sigma ^{2}}}

均值

E\left ( X \right ) =\int_{-\infty }^{\infty }xf\left ( x \right )dx=\mu

方差

D\left ( X\right ) =\int_{-\infty }^{\infty }\left ( x-\mu \right )^{2}f\left ( x \right )dx=\sigma ^{2}

2.4 \chi ^{2}分布(抽样分布)

设X1, X2, … , Xn是来自总体N(0,1)的样本, 则称统计量: 

\chi ^{2}=X_{1}^{2}+X_{2}^{2}+\cdots +X_{n}^{2}

服从自由度为 n 的\chi ^{2}分布。概率密度函数

其中伽玛函数\Gamma \left ( \alpha \right )

均值

E\left ( Y \right ) =\int_{-\infty }^{\infty }yf\left ( y \right )dx=n

方差

D\left ( Y \right ) =\int_{-\infty }^{\infty }\left ( y-n \right )^{2}f\left ( y \right )dx=2n

2.5 t分布(抽样分布)

设X~N(0,1) , Y~ \chi ^{2}\left ( n \right )     ,  且X与Y相互独立,则称随机变量

t =\frac{X}{\sqrt{Y/n}}

服从自由度为 n的 t 分布.t 分布又称学生氏(student)分布.概率密度函数

均值

E\left ( t \right ) =\int_{-\infty }^{\infty }tf\left ( t \right )dx=0

方差

D\left ( t \right ) =\int_{-\infty }^{\infty }\left ( t-0 \right )^{2}f\left ( t \right )dx=\frac{n}{n-2}

2.6 F分布(抽样分布)

U\sim \chi ^{2}\left ( n_{1} \right )V\sim \chi ^{2}\left ( n_{2} \right ),U与V相互独立,则称随机变量

F=\frac{U/n_{1}}{V/n_{2}}

服从自由度为n1及 n2  的F分布,n1称为第一自由度,n2称为第二自由度。概率密度为

均值

E\left ( y\right ) =\frac{n}{n-2}\, \, \, \, \, \, \, \, \, \, r=1,n>2

方差

D\left ( y\right ) =\frac{2n^{2}\left ( m+n-2 \right )}{m\left ( n-2 \right )^{2}\left ( n-4 \right )}\, \, \, \, \, \, \, \, \, \, n>4

2.7 \Gamma分布

        假设随机变量X为等到第α件事发生所需之等候时间,且每个事件之间的等待时间是互相独立的,α为事件发生的次数,β代表事件发生一次的概率,那么这α个事件的时间之和服从伽马分布。其概率密度函数为

f\left ( x \right )=\frac{1}{\beta ^{\alpha }\Gamma \left ( \alpha \right )} x^{\alpha -1}e^{-\frac{x}{\beta} }\, \, \, \, \, \, \, \, \, x>0

均值

E\left ( X\right ) =\frac{\alpha }{\beta }

方差

D\left ( X\right ) =\frac{\alpha }{\beta ^{2}}

2.8 瑞利分布

        当一个随机二维向量的两个分量呈独立的、均值为0,有着相同的方差的正态分布时,这个向量的模呈瑞利分布,概率密度为:

f\left ( x \right )=\frac{x}{\sigma ^{2}} e^{-\frac{x^{2}}{2\sigma ^{2}} }\, \, \, \, \, \, \, \, \, x>0

均值

E\left ( X\right ) =\sqrt{\frac{\pi }{2}}\sigma

方差

D\left ( X\right ) =\frac{4-\pi }{2}\sigma ^{2}

2.9 莱斯分布

         瑞利分布考虑的是零均值实部虚部是独立同分布的复高斯分布,莱斯分布针对的是一般情况下的模值分布,概率密度函数为:

f\left ( x \right )=\frac{x}{\sigma ^{2}} e^{-\frac{\left ( x^{2}+s^{2} \right )}{2\sigma ^{2}} }I_{0}\left ( \frac{xs}{\sigma ^{2}} \right )\, \, \, \, \, \, \, \, \, x>0

s^{2}表示直视路径功率分量,2\sigma ^{2}是非直视路径功率分量。I_{0}是修正的零阶贝塞尔函数。

I_{0}\left (x \right )=\int_{0}^{2\pi}e^{x \cos\left ( \theta \right )}d\theta

2.10 韦布尔分布

适用于机电类产品的磨损累计失效的分布形式。由于它可以利用概率值很容易地推断出它的,被广泛应用于各种寿命试验的数据处理。概率密度函数:

f\left ( x \right )=\frac{k}{\lambda } \left ( \frac{x}{\lambda } \right )^{k-1}e^{-\left ( x/\lambda \right )^{k}}\, \, \, \, \, \, \, \, \, x\geq 0

均值

E\left ( X\right ) =\lambda \Gamma \left ( 1+\frac{1}{k} \right )

方差

D\left ( X\right ) =\lambda ^{2}\left [ \Gamma \left ( 1+\frac{2}{k} \right )-\Gamma \left ( 1+\frac{1}{k} \right )^{2} \right ]

2.11 \beta分布

概率密度函数

f\left ( x \right )=\frac{\Gamma \left ( \alpha +\beta \right )}{\Gamma \left ( \alpha \right ) +\Gamma \left ( \beta \right )} x ^{\alpha -1}\left ( 1-x \right )^{\beta -1}\, \, \, \, \, \, \, \, \, 0<x< 1

均值

E\left ( X\right ) =\frac{\alpha }{\alpha +\beta }

方差

D\left ( X\right ) =\frac{\alpha \beta }{\left ( \alpha +\beta \right )^{2}\left ( \alpha +\beta +1 \right )}

2.12 对数正态分布

概率密度函数

f\left ( x \right )=\frac{1}{x\ln a\sqrt{2\pi\sigma ^{2}}}e^{-\frac{\left ( \log_{a}x-\mu \right )^{2}}{2\sigma ^{2}}}

均值

E\left ( X\right ) =a^{\mu +\ln a\sigma ^{2}/2}

方差

D\left ( X\right ) =\left ( a^{\ln a\sigma ^{2}} -1\right )a^{2\mu +\ln a\sigma ^{2}}

2.13 柯西分布

概率密度函数

f\left ( x \right )=\frac{1}{\pi }\left [ \frac{\gamma }{\left ( x-x_{0} \right )^{2}+\gamma ^{2}} \right ]

均值和方差不存在。

三、性质及定理

3.1、均值性质

性质1:E (C ) = C

性质2:E (aX ) = a E (X )

性质3:E (X + Y ) = E (X ) + E (Y ) 

性质4:当X ,Y 相互独立时,E (X Y ) = E (X )E (Y ) 

性质5:设X 为连续型随机变量,密度函数为f (x),Y = g(X ),若广义积分\int_{-\infty }^{\infty }g\left ( x \right )f\left ( x \right )dx绝对收敛,则

E\left ( Y \right )=\int_{-\infty }^{\infty }g\left ( x \right )f\left ( x \right )dx

3.2、方差性质

性质1:若X=C,C为常数,则D(X)=0 .

性质2:若b为常数,随机变量X的方差存在,则bX的方差存在, 且D(bX) = b2D(X)

性质3:若随机变量X1, X2, … , Xn 的方差都存在, 则X1+X2+...+Xn的方差存在,且

性质4:若随机变量X1, X2, …, Xn相互独立,则

性质5:有限个相互独立的正态随机变量的线性组合仍然服从正态分布

性质6:切比雪夫(Chebyshev)不等式

对随机变量X 和任意的\varepsilon >0,有

3.3、定理

  • 辛钦大数定律

       设X1, X2, …是独立同分布的随机变量序列,且E(Xi)=\mu,i=1, 2,…, 则对任给 \varepsilon>0,

\lim_{n\rightarrow \infty }P\left \{ \left | \frac{1}{n}\sum_{i=1}^{n} X_{i}-\mu \right |<\varepsilon \right \}=1

辛钦大数定律为估计随机变量的期望值提供了一条实际可行的途径.

  • 贝努里大数定律

        设Sn是n重贝努里试验中事件A发生的 次数,p是一次试验中事件A发生的概率,则对任给的ε> 0,

\lim_{n\rightarrow \infty }P\left \{ \left | \frac{S_{n}}{n}-p \right |<\varepsilon \right \}=1

贝努里大数定律提供了通过试验来确定事件概率的方法.

  • 中心极限定理

        设随机序列 {Xj} 独立同分布,有共同的数学期望 \mu和方差\sigma ^{2}.   部分和Sn =X1+ X2+…+ Xn,  则Sn的标准化

依分布收敛到标准正态分布. 即对任何x,

这里\Phi \left ( x \right )是标准正态分布的分布函数。对充分大的n ,部分和Sn =X1+ X2+…+ Xn,  的概率分布可以用正态分布

常用离散型概率分布(下) - 知乎 (zhihu.com)

概率论中,负二项分布(帕斯卡分布)的期望到底是哪个? - 知乎 (zhihu.com)

概率论学习笔记(二) - 知乎 (zhihu.com)

F分布期望方差怎么推导? - 知乎 (zhihu.com)

Gamma分布 - 知乎 (zhihu.com)

瑞利分布(数学名词)_百度百科 (baidu.com)

什么是小尺度衰落信道、瑞利信道、莱斯信道、Nakagami信道 - 知乎 (zhihu.com)

通信原理 高斯分布 莱斯分布 瑞利分布 有何联系 有何区别 如何区分? - 知乎 (zhihu.com)

柯西分布_百度百科 (baidu.com)

贝塔分布_百度百科 (baidu.com)

韦布尔分布_百度百科 (baidu.com)

柯西分布_百度百科 (baidu.com)


总结

本文简单介绍了自己对随机概念的理解,并简单列举了常见的随机分布类型。在信号处理中常用的随机信号模型包括:高斯模型、瑞利模型、莱斯模型等。有更好的内容欢迎在评论区放置链接,另外有问题也欢迎评论区留言。转载请附链接【杨(_> <_)】的博客_CSDN博客-信号处理,SAR,代码实现领域博主。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/410537.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

pytest钩子函数-pytest_runtest_logreport提取测试用例相关信息

问题&#xff1a;想在每个日志中记录测试用例开始结束时间&#xff0c;获取到测试用例的名称。 解决办法&#xff1a;使用钩子pytest_runtest_logreport 在pytest中&#xff0c;想要在conftest.py文件中获取正在运行的测试用例的名称&#xff0c;可以使用pytest_runtest_logre…

玩转ChatGPT:参考文献速查

一、写在前面 各位大佬&#xff0c;我又回来了&#xff0c;最近2月太忙啦&#xff08;过年、奶娃、本子、材料、结题&#xff09;&#xff0c;断更了。现水一篇证明我还活着&#xff01;&#xff01;&#xff01; 最近在写国自然本子&#xff0c;遇到一个估计大家都会遇到的问…

node14下运行项目报错:regeneratorRuntime is not defined

regeneratorRuntime is not defined&#xff0c;这是由于配置babel出错问题&#xff0c;由于使用了es7语法如async/await而当前babel版本过低 解决&#xff1a; npm install -D babel-plugin-transform-runtime babel-runtime 安装完成后在.babelrc文件下配置&#xff1a; &qu…

Centos7.9环境源码编译安装ffmpeg6.x

1.官网ffmpeg下载源码 https://ffmpeg.org/download.html#build-windows 2.未安装x264库则先安装配置 可以先查询x264库: whereis libx264 安装编译工具和依赖库&#xff1a; sudo yum install gcc make cmake mercurial git yasm pkgconfig autoconf automake libtool sudo…

Easy-Jmeter: 性能测试平台

目录 写在开始1 系统架构2 表结构设计3 测试平台生命周期4 分布式压测5 压力机管理6 用例管理6.1 新增、编辑用例6.2 调试用例6.3 启动测试6.4 动态控量6.5 测试详情6.6 环节日志6.7 实时数据6.8 测试结果 7 测试记录7 用例分析8 系统部署8.1普通部署8.2容器化部署 写在最后 写…

【Node.js】自动生成 API 文档

目录 1、直接使用swagger-ui-express 2、配合swagger-jsdoc 如何在Node.js项目中使用 Swagger 来自动生成 API接口文档&#xff0c;使用生成方式有很多种。本文基于swagger-jsdocswagger-ui-express快速实现 1、直接使用swagger-ui-express // 方便来浏览和测试api npm i sw…

2023年12月CCF-GESP编程能力等级认证C++编程六级真题解析

本文收录于专栏《C++等级认证CCF-GESP真题解析》,专栏总目录・点这里 一、单选题(共15题,共30分) 第1题 关于C++类和对象的说法,错误的是( )。 A:在C++中,一切皆对象,即便是字面量如整数5等也是对象 B:在C++中,可以自定义新的类,并实例化为新的对象 C:在C++中,…

再探二分法

推荐阅读 智能化校园&#xff1a;深入探讨云端管理系统设计与实现&#xff08;一&#xff09; 智能化校园&#xff1a;深入探讨云端管理系统设计与实现&#xff08;二&#xff09; 文章目录 推荐阅读二分查找题目思路解法左闭右闭式写法左闭右开式写法 二分查找 题目 给定一个…

单步调试Linux内核论证水位线watermark

哈喽&#xff0c;我是子牙&#xff0c;一个很卷的硬核男人 深入研究计算机底层、Windows内核、Linux内核、Hotspot源码……聚焦做那些大家想学没地方学的课程。为了保证课程质量及教学效果&#xff0c;一年磨一剑&#xff0c;三年先后做了这些课程&#xff1a;手写JVM、手写OS…

互联网加竞赛 机器视觉人体跌倒检测系统 - opencv python

0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; 机器视觉人体跌倒检测系统 该项目较为新颖&#xff0c;适合作为竞赛课题方向&#xff0c;学长非常推荐&#xff01; &#x1f947;学长这里给一个题目综合评分(每项满分5分) 难度系数&…

nn.AdaptiveAvgPool3d的用法

#B,C,D,H,W->B,C,1,H,W self.adaptive_pool nn.AdaptiveAvgPool3d((1, None, None)) nn.AdaptiveAvgPool3d的Pytorch官方文档: https://pytorch.org/docs/stable/generated/torch.nn.AdaptiveAvgPool3d.html import torch import torch.nn as nn # target output size of …

JavaAPI常用类02

目录 基本数据类型封装类 包装类常用属性方法 8中基本数据类型各自所对应的包装类 以下方法以java.lang.Integer为例 代码 运行 装箱和拆箱 装箱 何为装箱 代码 范围问题 代码 运行 拆箱 代码 String类 概述 代码 运行 创建形式 画图讲解 代码 运行 构造…

挑战杯 基于机器视觉的二维码识别检测 - opencv 二维码 识别检测 机器视觉

文章目录 0 简介1 二维码检测2 算法实现流程3 特征提取4 特征分类5 后处理6 代码实现5 最后 0 简介 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 基于机器学习的二维码识别检测 - opencv 二维码 识别检测 机器视觉 该项目较为新颖&#xff0c;适合作为竞赛课…

mac下使用jadx反编译工具

直接执行步骤&#xff1a; 1.创建 jadx目录 mkdir jadx2.将存储库克隆到目录 git clone https://github.com/skylot/jadx.git 3. 进入 jadx目录 cd jadx 4.执行编译 等待片刻 ./gradlew dist出现这个就代表安装好了。 5.最后找到 jadx-gui 可执行文件&#xff0c;双击两下…

Spring Cloud微服务网关Zuul过滤链实现的源码解读

一、Zuul过滤器的加载过程 Zuul网关的Filter需要经过初始化加载到Spring容器后&#xff0c;才能在请求中发挥作用&#xff1a; 在上篇文章&#xff1a;《Spring Cloud微服务网关Zuul的注解EnableZuulProxy或EnableZuulServer做了什么事情》 中说到的ZuulServerAutoConfigurati…

2-23 switch、JVM内存模型、垃圾回收机制、this、static、变量的分类

文章目录 switch 实现成绩评级JVM内存模型概念栈的特点堆的特点 垃圾回收机制通用的分代垃圾回收机制三种清理算法垃圾回收过程垃圾回收常见的两种检测引用算法内存泄露常见原因 this的用法创建对象的四步 static 静态特点 变量的分类和作用域import switch 实现成绩评级 switc…

windows安装git(全网最详细,保姆教程)

1.下载git&#xff08;windows版本&#xff09; 官网下载&#xff1a;Git - Downloads 点进去后&#xff0c;进入如下界面 2.安装git &#xff08;1&#xff09;找到下载到的文件&#xff0c;进行双击进行安装 &#xff08;2&#xff09;这里是安装前的使用说明&#xff0c; …

抖音博主老隋分享的temu蓝海项目怎么做更好?

很多网友在讨论老隋分享的temu蓝海项目&#xff0c;恰巧我也是通过抖音知道的这个项目&#xff0c;经过前段时间的系统学习temu的知识&#xff0c;加上我自己也是干过电商相关的工作&#xff0c;理解起来比较容易&#xff0c;下面我就用本文详细介绍一下抖音博主老隋分享的temu…

2024年2月22日 Go生态洞察:强化切片上的通用函数

&#x1f337;&#x1f341; 博主猫头虎&#xff08;&#x1f405;&#x1f43e;&#xff09;带您 Go to New World✨&#x1f341; &#x1f984; 博客首页——&#x1f405;&#x1f43e;猫头虎的博客&#x1f390; 专栏链接&#xff1a; &#x1f517; 精选专栏&#xff1a;…

【人工智能高频面试题--基础篇】

&#x1f680; 作者 &#xff1a;“码上有前” &#x1f680; 文章简介 &#xff1a;人工智能高频面试题 &#x1f680; 欢迎小伙伴们 点赞&#x1f44d;、收藏⭐、留言&#x1f4ac; 人工智能高频面试题 1.什么是人工智能&#xff1f;什么是人工智能神经网络&#xff1f;2.解释…