1、过期删除策略
1.1、介绍
Redis 是可以对 key 设置过期时间的,因此需要有相应的机制将已过期的键值对删除,而做这个工作的就是过期键值删除策略。
每当我们对一个 key 设置了过期时间时,Redis 会把该 key 带上过期时间存储到一个过期字典(expires dict)
中,也就是说过期字典
保存了数据库中所有 key 的过期时间。
字典实际上是哈希表
,哈希表的最大好处就是让我们可以用 O(1) 的时间复杂度来快速查找。当我们查询一个 key 时,Redis 首先检查该 key 是否存在于过期字典中:
如果不在
,则正常读取键值;如果存在
,则会获取该 key 的过期时间,然后与当前系统时间进行比对,如果比系统时间大,那就没有过期,否则判定该 key 已过期。
1.2、定时删除策略
定时删除策略(TTL)的做法是,在设置 key 的过期时间时,同时创建一个定时事件,当时间到达时,由事件处理器自动执行 key 的删除操作。
优点
:可以保证过期 key 会被尽快删除,也就是内存可以被尽快地释放。因此,定时删除对内存是最友好的
;缺点
:在过期 key 比较多的情况下,删除过期 key 可能会占用相当一部分 CPU 时间,在内存不紧张但 CPU 时间紧张的情况下,将 CPU 时间用于删除和当前任务无关的过期键上,无疑会对服务器的响应时间和吞吐量造成影响。所以,定时删除策略对 CPU 不友好
。
1.3、惰性删除策略
惰性删除策略(Lazy Expire)的做法是,不主动删除过期键,每次从数据库访问 key 时,都检测 key 是否过期,如果过期则删除该 key。
优点
:因为每次访问时,才会检查 key 是否过期,所以此策略只会使用很少的系统资源,因此,惰性删除策略对 CPU 时间最友好;缺点
:如果一个 key 已经过期,而这个 key 又仍然保留在数据库中,那么只要这个过期key 一直没有被访问,它所占用的内存就不会释放,造成了一定的内存空间浪费。所以,惰性删除策略对内存不友好。
1.4、定期删除策略
定期删除策略(Eviction)的做法是,每隔一段时间「随机」从数据库中取出一定数量的 key 进行检查,并删除其中的过期key。
优点
:通过限制删除操作执行的时长和频率,来减少删除操作对 CPU 的影响,同时也能删除一部分过期的数据减少了过期键对空间的无效占用;缺点
:内存清理方面没有定时删除效果好,同时没有惰性删除使用的系统资源少,是一个折中的策略;缺点
:难以确定删除操作执行的时长和频率。如果执行的太频繁,定期删除策略变得和定时删除策略一样,对CPU不友好;如果执行的太少,那又和惰性删除一样了,过期 key 占用的内存不会及时得到释放。
1.5、三者区别
1.6、Redis实现
Redis使用的过期删除策略是「惰性删除+定期删除」这两种策略配和使用,以求在合理使用 CPU 时间和避免内存浪费之间取得平衡。
Redis 的惰性删除策略由 db.c 文件中的 expireIfNeeded 函数实现,Redis 在访问或者修改 key 之前,都会调用 expireIfNeeded
函数对其进行检查,检查 key 是否过期:
如果过期
,则删除该 key,至于选择异步删除,还是选择同步删除,根据 lazyfree_lazy_expire 参数配置决定(Redis 4.0版本开始提供参数),然后返回 null 客户端;如果没有过期
,不做任何处理,然后返回正常的键值对给客户端;
再回忆一下,定期删除策略的做法:每隔一段时间「随机」从数据库中取出一定数量的 key 进行检查,并删除其中的过期key
。
在 Redis 中,默认每秒进行10次过期检查一次数据库,此配置可通过 Redis 的配置文件 redis.conf 进行配置,配置键为 hz
,它的默认值是 hz 10
。
值得注意的是,每次检查数据库并不是遍历过期字典中的所有key
,而是从数据库中随机抽取一定数量的 key 进行过期检查
。这个一定数量在源码中是写死的,并未提供对应的参数进行自定义配置,数值固定为20
。
Redis 为了保证定期删除不会出现循环过度,导致线程卡死现象,为此增加了定期删除循环流程的时间上限,默认不会超过
25ms
。
1.7、持久化时过期键处理
Redis 持久化文件有两种格式:RDB(Redis Database)和 AOF(Append Only File),下面我们分别来看过期键在这两种格式中的呈现状态。
RDB 文件分为两个阶段,RDB 文件生成阶段和加载阶段:
-
「RDB 文件生成阶段」
从内存状态持久化成 RDB(文件)的时候,会对 key 进行过期检查,过期的键不会被保存到新的 RDB 文件中,因此 Redis 中的过期键不会对生成新RDB 文件产生任何影响; -
「RDB 加载阶段」
如果 Redis 是主服务器运行模式的话,在载入 RDB 文件时,程序会对文件中保存的键进行过期检查,过期键不会被载入到数据库中。所以过期键不会对载入RDB 文件的主服务器造成影响; -
「RDB 加载阶段」
如果 Redis 是从服务器运行模式的话,在载入 RDB 文件时,不论键是否过期都会被载入到数据库中。但由于主从服务器在进行数据同步时,从服务器的数据会被清空。所以一般来说,过期键对载入 RDB 文件的从服务器也不会造成影响。
AOF 文件分为两个阶段,AOF 文件写入阶段和重写阶段。
「AOF 文件写入阶段」
当 Redis 以 AOF 模式持久化时,如果数据库某个过期键还没被删除,那么 AOF 文件会保留此过期键,当此过期键被删除后,Redis 会向 AOF 文件追加一条 DEL 命令来显式地删除该键值;「AOF 重写阶段」
执行 AOF 重写时,会对 Redis 中的键值对进行过期检查,已过期的键不会被保存到重写后的 AOF 文件中,因此不会对 AOF 重写造成任何影响。
1.8、主从模式过期键处理
当 Redis 运行在主从模式下时,从库不会进行过期扫描,从库对过期的处理是被动的。也就是即使从库中的 key 过期了,如果有客户端访问从库时,依然可以得到 key 对应的值,像未过期的键值对一样返回。
从库的过期键处理依靠主服务器控制,主库在 key 到期时,会在 AOF 文件里增加一条 del 指令,同步到所有的从库,从库通过执行这条 del 指令来删除过期的 key。
2、内存淘汰机制
2.1、介绍
Redis的内存淘汰机制是为了解决内存占用过高的问题
。
在 Redis 的运行内存达到了某个阀值,就会触发内存淘汰机制,根据一定的策略来选择一些键值对进行删除,从而释放部分内存。
这个阀值就是我们设置的最大运行内存,此值在 Redis 的配置文件中可以找到,配置项为maxmemory
。
常见的内存淘汰策略有:
LRU(Least Recently Used,最近最少使用)
:淘汰整个键值中最久未使用的键值;LFU(Least Frequently Used,最不经常使用)
:淘汰整个键值中最少使用的键
值;Random(随机)
:随机选择键值对进行淘汰。noeviction(不进行数据淘汰)
:Redis3.0之后,默认的内存淘汰策略。它表示当运行内存超过最大设置内存时,不淘汰任何数据,而是不再提供服务,直接返回错误。
虽然虽然,但是后面就不介绍后两个策略了,主要介绍前两个策略:
- 随机策略:想介绍也没东西介绍,就随缘抓几个起来噶掉这玩意
- 不进行数据淘汰策略:想介绍也没东西介绍,就直接把门关了这玩意
2.2、LRU
LRU(Least Recently Used,最近最少使用)是Redis3.0之前默认的内存淘汰策略,它是淘汰整个键值中最久未使用的键值。
传统 LRU 算法的实现是基于「链表」
结构,链表中的元素按照操作顺序从前往后排列
,最新操作的键会被移动到表头,当需要内存淘汰时,只需要删除链表尾部的元素即可,因为链表尾部的元素就代表最久未被使用的元素。
Redis 并没有使用这样的方式实现 LRU 算法,因为传统的 LRU 算法存在两个问题:
- 需要用链表管理所有的缓存数据,这会带来
额外的空间开销
; - 当有数据被访问时,需要在链表上把该数据移动到头端,如果有大量数据被访问,就会带来很多链表移动操作,会很耗时,进而会
降低 Redis 缓存性能
。
Redis 实现的是一种近似 LRU 算法,目的是为了更好的节约内存,它的实现方式是在 Redis 的对象结构体中添加一个额外的字段,用于记录此数据的最后一次访问时间。
当 Redis 进行内存淘汰时,会使用随机采样的方式来淘汰数据,它是默认随机取 5 个值(此值可配置),然后淘汰最久没有使用的那个。
Redis 实现的 LRU 算法的优点:
- 不用为所有的数据维护一个大链表,节省了空间占用;
- 不用在每次数据访问时都移动链表项,提升了缓存的性能;
但是 LRU 算法有一个问题,由于是随机采样的方式来淘汰数据,因此无法解决缓存污染问题。
比如应用一次读取了大量的数据,而这些数据只会被读取这一次,如果运气炸裂每次随机采样都采不到它们,那么这些数据会留存在 Redis 缓存中很长一段时间,造成缓存污染。
2.3、LFU
LFU 全称是 Least Frequently Used 翻译为最近最不常用的,是在Redis4.0新增的一种内存淘汰策略。
LFU 算法是根据数据访问次数来淘汰数据的,它的核心思想是“如果数据过去被访问多次,那么将来被访问的频率也更高”。
其实严格来说,LFU算法是根据数据访问频率来淘汰数据的。
所以, LFU 算法会记录每个数据的访问次数。当一个数据被再次访问时,就会增加该数据的访问次数。这样就解决了偶尔被访问一次之后,数据留存在缓存中很长一段时间的问题,相比于 LRU 算法也更合理一些。
LFU 算法相比于 LRU 算法的实现,多记录了「数据的访问频次」的信息。Redis 对象的结构如下:
typedef struct redisObject {
...
// 24 bits,用于记录对象的访问信息
unsigned lru:24;
...
} robj;
Redis 对象头中的 lru 字段,在 LRU 算法下和 LFU 算法下使用方式并不相同。
在 LRU 算法中,Redis 对象头的 24 bits 的 lru 字段是用来记录 key 的访问时间戳,因此在 LRU 模式下,Redis可以根据对象头中的 lru 字段记录的值,来比较最后一次 key 的访问时间长,从而淘汰最久未被使用的 key。
在 LFU 算法中,Redis对象头的 24 bits 的 lru 字段被分成两段来存储, 高16bit存储 ldt (Last Decrement Time), 低8bit 存储 logc (Logistic Counter):
- ldt 是用来记录 key 的访问时间戳;
- logc 是用来记录 key 的访问频次,它的值越小表示使用频率越低,越容易淘汰,每个新加入的 key 的logc 初始值为 5。
注意, logc 并不是单纯的访问次数,而是访问频次(访问频率),因为 logc 会随时间推移而衰减的。
在每次 key 被访问时,会先对 logc 做一个衰减操作,衰减的值跟前后访问时间的差距有关系.如果上一次访问的时间与这一次访问的时间差距很大,那么衰减的值就越大,这样实现的 LFU 算法是根据访问频率来淘汰数据的,而不只是访问次数。
访问频率需要考虑 key 的访问是多长时间段内发生的。key 的先前访问距离当前时间越长,那么这个 key 的访问频率相应地也就会降低,这样被淘汰的概率也会更大。
对 logc 做完衰减操作后,就开始对 logc 进行增加操作,增加操作并不是单纯的自增,而是根据概率增加,如果 logc 越大的 key,它的 logc 就越难再增加。
所以,Redis 在访问 key 时,对于 logc 是这样变化的:
- 先按照上次访问距离当前的时长,来对 logc 进行衰减;
- 然后,再按照一定概率增加 logc 的值
redis.conf 提供了两个配置项,用于调整 LFU 算法从而控制 logc 的增长和衰减:
- lfu-decay-time 用于调整 logc 的衰减速度,它是一个以分钟为单位的数值,默认值为1, lfu-decay-time 值越大,衰减越慢;
- lfu-log-factor 用于调整 logc 的增长速度, lfu-log-factor 值越大,logc 增长越慢。
2.4、区别
3、区分过期删除和内存淘汰
内存淘汰机制
:
- 当 Redis 的内存使用达到配置的最大内存限制时,内存淘汰机制会根据预先设置的策略来删除一些键值对,以释放内存空间。
- 内存淘汰机制并不关心键是否设置了过期时间,它主要根据某种算法选择要淘汰的键值对,以腾出更多的内存空间,使得新的键值对可以被存储在内存中。
- 常见的内存淘汰策略有 LRU(最近最少使用)、LFU(最不经常使用)、随机等。
过期删除机制
:
- Redis 允许为键设置过期时间,过期删除机制是在键设置了过期时间后,当键过期时自动将其删除。
- 过期删除机制并不是为了释放内存,而是为了使 Redis 中的数据始终保持最新的状态。
- 过期的键值对将不再对外提供服务,直到下次有读或写操作访问该键时,Redis 会发现键已经过期,然后将其删除。