在Sora引爆视频生成时,Meta开始用Agent自动剪视频了

图片

未来,视频剪辑可能也会像视频生成领域一样迎来 AI 自动化操作的大爆发。

这几天,AI 视频领域异常地热闹,其中 OpenAI 推出的视频生成大模型 Sora 更是火出了圈。而在视频剪辑领域,AI 尤其是大模型赋能的 Agent 也开始大显身手。

随着自然语言被用来处理与视频剪辑相关的任务,用户可以直接传达自己的意图,从而不需要手动操作。但目前来看,大多数视频剪辑工具仍然严重依赖手动操作,并且往往缺乏定制化的上下文帮助。因此,用户只能自己处理复杂的视频剪辑问题。

关键在于如何设计一个可以充当协作者、并在剪辑过程中不断协助用户的视频剪辑工具?在本文中,来自多伦多大学、 Meta(Reality Labs Research)、加州大学圣迭戈分校的研究者提出利用大语言模型(LLM)的多功能语言能力来进行视频剪辑,并探讨了未来的视频剪辑范式,从而减少与手动视频剪辑过程的阻碍。

图片

  • 论文标题:LAVE: LLM-Powered Agent Assistance and Language Augmentation for Video Editing

  • 论文地址:https://arxiv.org/pdf/2402.10294.pdf

具体而言,研究者推出了视频剪辑工具 LAVE,它具备了一系列由 LLM 提供的语言增强功能。LAVE 引入了一个基于 LLM 的规划和执行智能体,该智能体可以解释用户的自由格式语言命令、进行规划和执行相关操作以实现用户剪辑目标。智能体可以提供概念化帮助(如创意头脑风暴和视频素材概览)和操作帮助(包括基于语义的视频检索、故事板和剪辑修剪)。

为了使这些智能体的操作顺利进行,LAVE 使用视觉语言模型(VLM)自动生成视频视觉效果的语言描述。这些视觉叙述使 LLM 能够理解视频内容,并利用它们的语言能力协助用户完成剪辑。此外,LAVE 提供了两种交互视频剪辑模式,即智能体协助和直接操作。双重模式为用户提供了灵活性,并允许他们按需改进智能体操作。

至于 LAVE 的剪辑效果怎么样?研究者对包括剪辑新手和老手在内的 8 名参与者进行了用户研究,结果表明,参与者可以使用 LAVE 制作出令人满意的 AI 协作视频。

值得关注的是,这项研究的六位作者中有 5 位华人,包括一作、多伦多大学计算机科学博士生 Bryan Wang、Meta 研究科学家 Yuliang Li、Zhaoyang Lv 和 Yan Xu、加州大学圣迭戈分校助理教授 Haijun Xia。

LAVE 用户界面(UI)

我们首先来看 LAVE 的系统设计,具体如下图 1 所示。

LAVE 的用户界面包含三个主要组件,分别如下:

  • 语言增强视频库,显示带有自动生成的语言描述的视频片段;

  • 视频剪辑时间轴,包括用于剪辑的主时间轴;

  • 视频剪辑智能体,使用户与一个会话智能体进行交互并获得帮助。

设计逻辑是这样的:当用户与智能体交互时,消息交换会在聊天 UI 中显示。当进行相关操作时,智能体对视频库和剪辑时间轴进行更改。此外,用户可以使用光标直接对视频库和时间轴进行操作,类似于传统的剪辑界面。

图片

语言增强视频库

语言增强视频库的功能如下图 3 所示。

与传统工具一样,该功能允许剪辑播放,但会提供视觉叙述,即为每个视频自动生成文本描述,包括语义标题和摘要。这些标题可以帮助理解和索引剪辑,摘要则提供了每个剪辑的视觉内容的概述,帮助用户形成自身编辑项目的故事情节。每个视频下方都会显示标题和时长。

图片

此外,LAVE 使用户可以利用语义语言查询来搜索视频,检索到的视频会在视频库中显示并按相关性排序。这一功能必须通过剪辑智能体来执行。

视频剪辑时间轴

从视频库中选定视频并将它添加到剪辑时间轴后,它们会显示在界面底部的视频剪辑时间轴上,如下图 2 所示。其中,时间轴上的每个剪辑都由一个框表示,并显示三个缩略图帧,分别是开始帧、中间帧和结束帧。

图片

在 LAVE 系统中,每个缩略图帧代表剪辑中一秒钟的素材。与视频库一样,每个剪辑的标题和描述都会提供。LAVE 中的剪辑时间轴具有两个关键功能,即剪辑排序和修剪。

其中在时间轴上进行剪辑排序是视频剪辑中的一项常见任务,对于创建连贯的叙述非常重要。LAVE 支持两种排序方法,一是基于 LLM 的排序利用视频剪辑智能体的故事板功能进行操作,二是手动排序通过用户直接操作来排序,拖放每个视频框来设置剪辑出现的顺序。

修剪在视频剪辑中也很重要,可以突出显示关键片段并删除多余内容。在修剪时,用户双击时间轴中的剪辑,打开一个显示一秒帧的弹出窗口,如下图 4 所示。

图片

视频剪辑智能体

LAVE 的视频剪辑智能体是一个基于聊天的组件,可促进用户和基于 LLM 的智能体之间的交互。与命令行工具不同,用户可以使用自由格式的语言与智能体进行交互。该智能体利用 LLM 的语言智能提供视频剪辑辅助,并提供具体的响应,以在整个编辑过程中指导和帮助用户。LAVE 的智能体协助功能是通过智能体操作提供的,每个智能体操作都涉及执行系统支持的编辑功能。

总的来说,LAVE 提供的功能涵盖了从构思和预先规划到实际编辑操作的整个工作流程,但该系统并没有强制规定严格的工作流程。用户可以灵活地利用与其编辑目标相符的功能子集。例如,具有清晰编辑愿景和明确故事情节的用户可能会绕过构思阶段并直接投入编辑。

后端系统

该研究采用 OpenAI 的 GPT-4 来阐述 LAVE 后端系统的设计,主要包括智能体设计、实现由 LLM 驱动的编辑功能两个方面。

智能体设计

该研究利用 LLM(即 GPT-4)的多种语言能力(包括推理、规划和讲故事)构建了 LAVE 智能体。

LAVE 智能体有两种状态:规划和执行。这种设置有两个主要好处:

  • 允许用户设置包含多个操作的高级目标,从而无需像传统命令行工具那样详细说明每个单独的操作。

  • 在执行之前,智能体会将规划呈现给用户,提供修改的机会并确保用户可以完全控制智能体的操作。研究团队设计了一个后端 pipeline 来完成规划和执行流程。

如下图 6 所示,该 pipeline 首先根据用户输入创建行动规划。然后,该规划从文本描述转换为函数调用,随后执行相应的函数。

图片

实现 LLM 驱动的编辑功能

为了帮助用户完成视频编辑任务,LAVE 主要支持五种由 LLM 驱动的功能,包括:

  • 素材概述

  • 创意头脑风暴

  • 视频检索

  • 故事板

  • 剪辑修剪

其中前四个可通过智能体来访问(图 5),而剪辑修剪功能可通过双击时间轴中的剪辑,打开一个显示一秒帧的弹出窗口(图 4)。

图片

其中,基于语言的视频检索是通过向量存储数据库实现的,其余的则通过 LLM 提示工程(prompt engineering)来实现。所有功能都建立在自动生成的原始素材语言描述之上,包括视频库中每个剪辑的标题和摘要(图 3)。研究团队将这些视频的文字描述称为视觉叙述(visual narration)。

图片

来源|机器之心 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/409239.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

PMP项目管理考试要注意些什么?

PMP考试和PMP备考过程中应该注意哪些问题? PMP备考完成后就要迎接实战考试了,考试前千万不要有多余的想法,顺其自然就行了,我想大家各种紧张、各种忧虑的原因大抵是因为考试成本考,担心考不过,其实只要你在…

Java后端服务接口性能优化常用技巧

接口性能优化常用技巧 前言1.数据库索引2.慢SQL优化3.异步执行4.批量处理5.数据预加载6.池化技术(多线程)8.事件回调机制9.串行改为并行调用10.深度分页问题 前言 对于高标准程序员来说提供高性能的服务接口是我们所追求的目标,以下梳理了一…

Linux安装Zookeeper

目录 下载配置启动 下载 下载链接 https://archive.apache.org/dist/zookeeper/上传 我直接本地下好了,拖到对应文件夹解压,重命名,注意路径 tar -zxvf /opt/Zookeeper/apache-zookeeper-3.7.2-bin.tar.gz -C /opt/ mv /opt/apache-zookeep…

WPF真入门教程29--MVVM常用框架之MvvmLight

1、MVVM模式回顾 关于mvvm模式的基础知识,请看这2个文章: WPF真入门教程23--MVVM简单介绍 WPF真入门教程24--MVVM模式Command命令 做过VUE开发或微信小程序开发的伙伴,就知道MVVM模式,核心就是数据驱动控件,全栈开…

【EAI 025】Ego4D: Around the World in 3,000 Hours of Egocentric Video

Paper Card 论文标题:Ego4D: Around the World in 3,000 Hours of Egocentric Video 论文作者:Kristen Grauman, Andrew Westbury, Eugene Byrne, et al. 作者单位:UC Berkeley, CMU, Google 论文原文:https://arxiv.org/abs/2110…

【MySQL高可用集群】MySQL的MGR搭建

前情提要: MySQL官方在 5.7.17版本正式推出组复制(MySQL Group Replication,简称MGR),使用类似 zookeeper 的多于一半原则。在一个集群由 2N1 个节点共同组成一个复制组,一个事务的提交,必须经过…

Babylonjs学习必备

基于babylonjs封装的一些功能和插件 ,希望有更多的小伙伴一起玩babylonjs; 欢迎加群:464146715 ​ 官方文档 中文文档 Babylonjs案例分享 ​ ​

kafka生产者2

1.数据可靠 • 0:生产者发送过来的数据,不需要等数据落盘应答。 风险:leader挂了之后,follower还没有收到消息。。。。 • 1:生产者发送过来的数据,Leader收到数据后应答。 风险:leader应答…

Vision Mamba:使用双向状态空间模型进行高效视觉表示学习

模型效果 将DeiT和Vim模型之间的性能和效率比较,为了进行准确性比较,我们首先在IN1K分类数据集上预训练DeiT和Vim,然后在不同的下游密集预测任务上微调通用主干,即,语义分割、目标检测、实例分割。结果表明&#xff0c…

VIO第5讲:后端优化实践

VIO第5讲后端优化实践:逐行手写求解器 文章目录 VIO第5讲后端优化实践:逐行手写求解器1 非线性最小二乘求解流程1.1 H矩阵不满秩的解决办法1.2 H矩阵的构建1.2.1 确定维度1.2.2 构建海塞矩阵 1.3 初始化μ—LM算法1.4 求解线性方程1.4.1 非SLAM问题—求逆…

【架构】GPU架构总结

文章目录 GPU架构GPU渲染内存架构Streaming Multiprocessor(SM)CUDA CoreTensor CoreRT CoreCPU-GPU异构系统GPU资源管理模型 GPU架构演进G80 架构Fermi 架构Maxwell架构Tesla架构Pascal架构Volta 架构Turing架构Ampere 架构Hopper架构 参考文献 GPU架构 主要组成包括&#xf…

【C语言】指针初阶

正文开始之前,我们要记住一个东西就是:地址指针 目录 一、指针的解释二、指针变量和地址1、取地址操作符2、指针变量和解引用操作1、指针变量2、拆解指针类型3、解引用操作符4、注意事项 3、指针变量的大小4、指针的解引用5、void*指针 三、指针的运算1、…

【Java程序设计】【C00277】基于Springboot的招生管理系统(有论文)

基于Springboot的招生管理系统(有论文) 项目简介项目获取开发环境项目技术运行截图 项目简介 这是一个基于Springboot的招生管理系统 本系统分为系统功能模块、管理员功能模块以及学生功能模块。 系统功能模块:在系统首页可以查看首页、专业…

Linux——静态库

Linux——静态库 静态库分析一下 ar指令生成静态库静态库的使用第三方库优化一下 gcc -I(大写的i) -L -l(小写的l),头文件搜索路径,库文件搜索路径,连接库 今天我们来学习静态库的基本知识。 静态库 在了解静态库之前,我们首先来…

【Linux】MySQL数据库的使用

【Linux】MySQL数据库的使用 一、访问MySQL数据库二、创建及删除库和表1、创建新的库2、创建新的表3、删除一个数据表4、删除一个数据库 三、管理表中的数据记录1、插入数据记录2、查询数据记录3、修改数据记录4、删除数据记录 四、数据库用户授权1、授予权限2、查看权限3、撤销…

C/C++暴力/枚举/穷举题目持续更新(刷蓝桥杯基础题的进!)

目录 前言 一、百钱买百鸡 二、百元兑钞 三、门牌号码(蓝桥杯真题) 四、相乘(蓝桥杯真题) 五、卡片拼数字(蓝桥杯真题) 六、货物摆放(蓝桥杯真题) 七、最短路径(蓝…

文献阅读:Large Language Models are Null-Shot Learners

文献阅读:Large Language Models are Null-Shot Learners 1. 文章简介2. 方法介绍3. 实验考察 & 结论 1. 基础实验 1. 实验设计2. 实验结果 2. 消融实验 1. 小模型上的有效性2. ∅CoT Prompting3. 位置影响4. 组成内容 4. 总结 & 思考 文献链接&#xff1…

双重检查锁定与延迟初始化

双重检验锁:多线程下的单例模式。 懒加载模式:延迟初始化。

域名系统与IP地址分配

域名 域名的概述 域名是一个逻辑的概念,它不反映主机的物理地点 域名结构 由于数字形式的IP地址难以记忆和理解,为此人们采用英文符号来表示IP地址,这就产生了域名,域名长度不超过255各字符,每一层域名长度不超过6…

利用psutil库检查脚本是否在运行

摘要 如果要判断某一脚本是否在运行,可以通过psutil库获取所有进程的cmdline,并判断指定的文件名是否在cmdline中。 目录 1.psutil库简介 2.检查代码及说明 2.1检查思路 2.2异常捕获 2.3执行方法 1.psutil库简介 psutil 是一个跨平台(…