人工智能绘画的时代下到底是谁在主导,是人类的想象力,还是AI的创造力?

#ai作画

目录

一.AI绘画的概念

1. 数据集准备:

2. 模型训练:

3. 生成绘画:

二.AI绘画的应用领域

三.AI绘画的发展

四.AI绘画背后的技术剖析

1.AI绘画的底层原理

2.主流模型的发展趋势

2.1VAE — 伊始之门

2.2GAN

2.2.1GAN相较于Diffusion有什么不足?

2.3Diffusion — 当今首峰

2.4CLIP—图文匹配

2.5Lora模型

2.6Controlnet模型

五.AI绘画实例

六.未来AI的发展趋势


一.AI绘画的概念

AI 绘画是一种利用人工智能技术生成绘画作品的方法。它基于机器学习和深度学习算法,通过对大量的图像数据进行训练,模型学习到了图像的特征和规律,从而能够生成新的图像。
 
AI 绘画的过程通常包括以下几个步骤:

1. 数据集准备:

收集大量的图像数据,这些数据可以包括各种风格、主题的绘画作品。

2. 模型训练:

使用准备好的数据集对 AI 模型进行训练,让模型学习图像的特征和规律

3. 生成绘画:

输入一些关键词、描述或参考图像等信息,模型根据这些信息生成新的绘画作品。
 
AI 绘画技术可以生成各种风格的图像,例如写实、抽象、漫画、油画等。它可以帮助艺术家和设计师更快地创建概念设计、探索不同的风格,也可以为普通人提供一种创造艺术的新方式。

二.AI绘画的应用领域


- 设计行业:在广告、游戏、影视等领域,帮助设计师更快地生成概念图和原型。
- 艺术创作:艺术家可以利用 AI 绘画来探索新的风格和创意,或者与 AI 共同创作。
- 教育领域:学生可以通过 AI 绘画工具学习绘画技巧和艺术风格。
- 社交媒体:用户可以用 AI 生成的图像来装饰自己的社交媒体账号。
- 虚拟现实和增强现实:为这些应用创建虚拟场景和角色的图像。

三.AI绘画的发展

Diffusion 一般指 Diffusion Model(扩散模型),是一种基于深度学习的生成模型,常用于图像生成领域。Diffusion Model 的训练可以分为正向扩散和反向扩散两部分。
 
正向扩散过程逐步对输入图像加入高斯噪声,一共有 T 步,该过程将产生一系列噪声图像样本 x₁, ..., x_T。当 T → ∞ 时,最终的结果将变成一张完全包含噪声的图像。
 
反向扩散过程则是去除图像中的噪声。通过不断迭代去噪,模型可以学习到如何从噪声中恢复出原始图像,从而实现图像生成。
 
除此之外,Diffusion 还可能指 Stable Diffusion,它是一款免费、开源的 AI 图像生成器,由 Stability AI 公司于2022年8月推出。Stable Diffusion 应用于 AI 软件,用户可以随意输入自己想要的内容,然后系统就会自动生成非常优秀的艺术渲染作品。

Midjourney是一个基于人工智能技术的图像生成程序,由UISDC研究实验室开发。它可以根据用户输入的文本自动生成图片。该程序自2022年7月12日开始公开测试,主要通过Discord平台上的机器人指令进行操作,允许用户创造各种图像作品。
 
Midjourney利用深度学习和神经网络等先进技术,对大量图像进行学习和训练,从而提升图像的质量和准确性。

Dalle是美国人工智能非营利组织OpenAI于2021年1月份推出的一个可以根据书面文字生成图像的人工智能系统,该名称来源于著名画家达利(Dalí)和机器人总动员(Wall-E)。

四.AI绘画背后的技术剖析

1.AI绘画的底层原理

神经网络左侧输入一些列数字,神经网络会按照圆圈里的计算规则及连线的权重,把数字从左到右计算和传递,最终,从最右侧的圆圈输出一系列数字。

然后将一串数字输入到没有训练过得神经网络模型,也会生成一串数字,只不过解码后可能就是一张乱码图片,所以需要大量数据和不断调整算法参数的权重

2.主流模型的发展趋势

2.1VAE — 伊始之门

VAE(变分自编码器)是一个深度生成模型,其最终目的是生成出概率分布P(x)。在VAE中,通过高斯混合模型(Gaussian Mixture Model)来生成P(x),也就是说P(x)是由一系列高斯分布叠加而成的,每一个高斯分布都有它自己的参数μ和σ。

为了找到隐变量Z与观察数据X之间的映射关系,VAE使用神经网络来拟合。具体来说,假设隐变量Z服从N(0, I)分布,并寻找一个映射关系将向量z映射成这一系列高斯分布的参数向量μ和σ。有了这一系列高斯分布的参数,就可以得到叠加后的P(x)的形式。

VAE模型与EM算法的推导有相似之处,但区别在于VAE模型中的隐变量Z是一个连续的无穷维向量,而EM算法中的隐变量是离散的。在VAE的参数估计中,由于隐变量数量假设是高维无限的,所以用神经网络去拟合,而不是使用极大似然估计1。

2.2GAN

GAN 是由生成器和判别器组成的网络,生成器试图生成逼真的假图像,而判别器则试图区分真假图像。在训练过程中,生成器不断地改进自己的生成能力,而判别器则不断地提高自己的识别能力。最终,生成器可以生成与真实图像难以区分的假图像。
 
生成器使用的是卷积神经网络(CNN)它可以对图像进行特征提取和分类。CNN 可以将图像分成不同的层,每一层都代表了图像的不同特征。生成器使用这些特征来生成新的图像。
 
判别器使用的是循环神经网络(RNN)它可以对序列数据进行处理,如文本描述。RNN 可以对序列中的每个元素进行处理,并将其与之前的元素进行关联,以更好地理解整个序列。

生成器使用的是卷积神经网络(CNN),它可以对图像进行特征提取和分类。CNN 可以将图像分成不同的层,每一层都代表了图像的不同特征。生成器使用这些特征来生成新的图像。

GAN的应用场景有哪些?

GAN的应用场景非常广泛,在图像生成,生成不存在的人物、物体、动物;图像修复、图像增强、风格化和艺术的图像创造等。不一一列举,想要详细了解的可以看链接:

2.2.1GAN相较于Diffusion有什么不足?

1.GAN的训练过程过程相对不稳定,生成器和判别器之间的平衡很容易打破,容易导致模型崩溃或崩塌问题;

2.判别器不需要考虑生成样品的种类,而只关注于确定每个样品是否真实,这使得生成器只需要生成少数高质量的图像就足以愚弄判别者;

3.生成的图像分辨率较低;

因此,以GAN模型难以创作出有创意的新图像,也不能通过文字提示生成新图像。

2.3Diffusion — 当今首峰

扩散模型是一种深度生成模型,主要用于图像和音频的生成它们在生成模型领域中表现出色,例如在图像生成方面,Dalle2和稳定扩散模型就是基于扩散模型的优秀代表。扩散模型的基本思想是通过一个前向扩散过程逐渐破坏数据分布中的结构,然后通过学习反向扩散过程来恢复这些结构,从而生成高度灵活且易于处理的数据。在训练过程中,模型会学习预测每个时间步的噪声,最终能够从高斯噪声输入中生成高分辨率的图像。扩散模型由两个阶段组成:使用时间表来缩放平均值和方差,并在每个时间步添加噪声。前向过程的数学定义可以表示为:q(xₜ|xₜ₋₁) = N(xₜ; sqrt{1-βₜ}xₜ, βₜI),其中正态分布由均值和方差参数化。

2.4CLIP—图文匹配

CLIP 模型 是一项由 OpenAI 开发的预训练模型,主要用于对比语言-图像的预训练任务。以下是关于 CLIP 的一些详细信息:

1.全称:CLIP代表Contrastive Language-Image Pre-Training,即对比语言-图像预训练。

2.主要功能:CLIP旨在通过大规模的图像-文本对数据进行对比性训练,以实现图像和文本的嵌入空间的对齐,以及跨模态的语义对齐。

3.结构:CLIP包含两个模态,分别是文本模态和视觉模态。文本模态负责对文本进行编码,得到其Embedding;视觉模态负责对图片进行编码,也得到其Embedding。这两个Embedding都是单向向量的长度。

4.训练原理:在训练过程中,CLIP会将文本和图像成对地进行编码,然后计算它们的相似度。对于每个批次的训练样本,CLIP会预测出所有可能的文本-图像对的相似度,这些相似度是通过文本特征和图像特征的余弦相似性计算的。

5.应用场景:CLIP不仅在文本图像检索方面表现出色,还可以应用于Zero-Shot Learning,即在没有特定训练的情况下识别新事物的视觉概念。

6.训练数据:CLIP的训练数据主要是文本-图像对,其中包括一张图像及其对应的文本描述。这种数据形式使得CLIP能够在互联网的海量数据中发现相关联的信息。

7.性能:CLIP在多个任务上的表现达到目前最佳水平

综上所述,CLIP 模型是一个多模态预训练模型,它在自然语言理解和计算机视觉分析之间建立了联系,并在多个领域展示了出色的性能和应用潜力。

2.5Lora模型

LoRA模型全称是:Low-Rank Adaptation of Large Language Models,可以理解为Stable-Diffusion中的一个插件,仅需要少量的数据就可以进行训练的一种模型。在生成图片时,LoRA模型会与大模型结合使用,从而实现对输出图片结果的调整。

2.6Controlnet模型

Controlnet就是控制网的意思,其实就是在大模型外部通过叠加一个神经网络来达到精准控制输出的内容。很好的解决了单纯的关键词的控制方式无法满足对细节控制的需要,比微调模型更进一步对图像生成的控制。

五.AI绘画实例

宇宙之中,众星环绕,有一颗独特且耀眼的恒星

六.未来AI的发展趋势

未来AI绘画可能会有以下发展趋势:
 
- 个性化创作:AI绘画将能够根据用户的喜好和情绪来创作作品,通过深度学习和大数据分析,描绘出丰富多元的艺术作品。
- 人机协作:艺术家可以与AI系统合作,将人的创意与机器的计算能力结合在一起,创作出前所未有的艺术作品。这样的协作可以拓展艺术的边界,开创更多的可能性。
- 虚拟现实(VR)与增强现实(AR)的结合:AI绘画将与这些技术结合,为用户提供更加沉浸和互动的艺术体验。
- 实时艺术创作:AI绘画将实现实时创作,即艺术作品可以根据实时数据和事件进行动态的变化和调整。
 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/408925.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

MES管理系统生产过程控制的核心要素

MES(制造执行系统)是为优化制造业生产过程和管理而设计的软件系统,其核心要素包括: 工单管理:工单管理是MES系统最基本的功能之一,它可以跟踪和管理各种类型的工单,如生产工单、维修工单和质量…

快速排序C语言实现程序

快速排序 快速排序算法一种最常见的排序算法,其核心思想就是 分治 ,具体的:1) 选定一个基准数;2) 分区,将所有大于基准数的数据分为一区,将所有小于等于基准数的数据分为一区&#x…

自定义神经网络四之编写自定义神经网络

文章目录 前言神经网络组件代码整体的项目结构Tensor张量Layers层NeuralNet神经网络Loss损失函数Optim优化器data数据处理train训练 神经网络解决实际问题实际问题训练和推理代码 总结 前言 自定义神经网络一之Tensor和神经网络 自定义神经网络二之模型训练推理 自定义神经网络…

osg qt5.15 osg3.6.3 osgEarth3.1 编译爬山

Demo演示:Qt5.15.2OSG3.6.3OsgEarth3.1的QtCreator下的msvc2019x64版本 osgQt编译 步骤一:下载解压 步骤二:CMake配置 步骤三:CMake配置添加osg环境 步骤四:CMake配置添加Qt环境 步骤五:CMake修改CMakeLis…

微信小程序uniapp劳务咨询系统知识百科考试系统java+python+nodejs+php均支持

使用劳务咨询服务平台小程序的分别管理员和用户二个权限子模块。 管理员所能使用的功能主要有:首页、个人中心、用户管理、百科分类管理、知识百科管理、地区信息管理、劳务需求管理、试卷管理、试题管理、论坛交流、系统管理、考试管理等。 用户用户端可以实现首页…

Pytorch 复习总结 3

Pytorch 复习总结,仅供笔者使用,参考教材: 《动手学深度学习》Stanford University: Practical Machine Learning 本文主要内容为:Pytorch 多层感知机。 本文先介绍了多层感知机的用法,再就训练过程中经常出现的过拟…

2024.2.23 模拟实现 RabbitMQ —— 实现消费消息逻辑

目录 引言 函数式接口 消费者订阅消息 实现思路 关于消息确认 引言 函数式接口 Lambda 表达式的本质是匿名函数Java 函数无法脱离类而存在,所以 Java 通过引入函数式接口以支持 Lambda 表达式 特性: 函数式接口为一个 interface 类该类中有且仅有一个…

【Python笔记-设计模式】代理模式

一、说明 代理模式是一种结构型设计模式,提供对象的替代品或其占位符。代理控制着对于原对象的访问,并允许在将请求提交给对象前后进行一些处理。 (一) 解决问题 控制对对象的访问,或在访问对象前增加额外的功能或控制访问 (二) 使用场景…

统信UOS系统窗口特效设置

原文链接:统信UOS系统设置窗口特效 在今天的技术分享中,我们将探讨如何在统信UOS系统上充分利用窗口特效来美化和提升用户界面的交互体验。统信UOS作为一款注重视觉体验和用户友好性的操作系统,提供了丰富的窗口特效设置,让用户可…

R语言入门笔记2.6

描述统计 分类数据与顺序数据的图表展示 为了下面代码便于看出颜色参数所对应的值,在这里先集中介绍, col1是黑色,2是粉红,3是绿色,4是天蓝,5是浅蓝,6是紫红,7是黄色,…

Go 利用上下文进行并发计算

关注公众号【爱发白日梦的后端】分享技术干货、读书笔记、开源项目、实战经验、高效开发工具等,您的关注将是我的更新动力! 在Go编程中,上下文(context)是一个非常重要的概念,它包含了与请求相关的信息&…

Bluejay电调固件修改自检音乐、自定义启动音乐旋律

Bluejay电调固件修改自检音乐、自定义启动音乐旋律 Bluejay电调固件基本介绍Bluejay电调固件特点修改自检音乐、启动音乐旋律准备材料修改过程 Bluejay固件旋律音乐格式开头部分音符部分 收集到的音乐代码 Bluejay电调固件基本介绍 Bluejay是一种数字电调固件,用于控…

Stable Diffusion 3 发布及其重大改进

1. 引言 就在 OpenAI 发布可以生成令人瞠目的视频的 Sora 和谷歌披露支持多达 150 万个Token上下文的 Gemini 1.5 的几天后,Stability AI 最近展示了 Stable Diffusion 3 的预览版。 闲话少说,我们快来看看吧! 2. 什么是Stable Diffusion…

运维SRE-08 网络基础与进阶

今日内容 - **定时备份案例进阶.** - **定时巡检(检查系统基础指标),写入到文件中.** - 网络(抽象) 掌握与吸收时间: 直到课程结束.(第2阶段结束) - 网络基础: 网络概述,网络结构,网络设备. - 网络核心: OSI7层模型 ※※※※※※TCP/IP 3次握手 ※※※※※※TCP/IP 4…

Django入门指南:从环境搭建到模型管理系统的完整教程

环境安装: ​ 由于我的C的Anaconda 是安装在C盘的,但是没内存了,所有我将环境转在e盘,下面的命令是创建环境到指定目录中. conda create --prefixE:\envs\dj42 python3.9进入环境中: conda activate E:\envs\dj42…

【并发】CAS原子操作

1. 定义 CAS是Compare And Swap的缩写,直译就是比较并交换。CAS是现代CPU广泛支持的一种对内存中的共享数据进行操作的一种特殊指令,这个指令会对内存中的共享数据做原子的读写操作。其作用是让CPU比较内存中某个值是否和预期的值相同,如果相…

C#与VisionPro联合开发——串口通信

串口通信 串口通信是一种常见的数据传输方式,通过串行接口(串口)将数据以串行比特流的形式进行传输。在计算机和外部设备之间,串口通信通常是通过串行通信标准(如RS-232)来实现的。串口通信可以用于连接各…

AtCoder ABC342 A-D题解

华为出的比赛&#xff1f; 好像是全站首个题解哎&#xff01; 比赛链接:ABC342 Problem A: 稍微有点含金量的签到题。 #include <bits/stdc.h> using namespace std; int main(){string S;cin>>S;for(int i0;i<s.size();i){if(count(S.begin(),S.end(),S[i…

《穿越火线:枪战王者》手游客户端技术方案: 实时同步与手感优化 转载

一、项目背景 CF手游的团队有着相当丰富的FPS游戏制作经验&#xff0c;但是移动端开发经验相对匮乏。团队面对的挑战很大&#xff0c;我们需要在手机端完美还原CF十多个游戏模式&#xff0c;上百把枪械手感。 虽然我们有实时对战FPS游戏开发经验&#xff0c;但是手游网络质量…

H5获取手机相机或相册图片两种方式-Android通过webview传递多张照片给H5

需求目的&#xff1a; 手机机通过webView展示H5网页&#xff0c;在特殊场景下&#xff0c;需要使用相机拍照或者从相册获取照片&#xff0c;上传后台。 完整流程效果&#xff1a; 如下图 一、H5界面样例代码 使用html文件格式&#xff0c;文件直接打开就可以展示布局&#…