使用 ES|QL 优化可观察性:简化 Kubernetes 和 OTel 的 SRE 操作和问题解决

作者:Bahubali Shetti

作为一名运营工程师(SRE、IT 运营、DevOps),管理技术和数据蔓延是一项持续的挑战。 简单地管理大量高维和高基数数据是令人难以承受的。

作为单一平台,Elastic® 帮助 SRE 将无限的遥测数据(包括指标、日志、跟踪和分析)统一并关联到单一数据存储 — Elasticsearch® 中。 然后,通过应用 Elastic 的高级机器学习 (ML)、AIOps、AI Assistant 和分析的强大功能,你可以打破孤岛并将数据转化为见解。 作为全栈可观测性解决方案,从基础设施监控到日志监控和应用程序性能监控 (APM) 的所有内容都可以在单一、统一的体验中找到。

在 Elastic 8.11 中,Elastic 的新管道查询语言 ES|QL(Elasticsearch 查询语言)现已提供技术预览,它可以转换、丰富和简化数据调查。 在新的查询引擎的支持下,ES|QL 提供了具有并发处理的高级搜索功能,从而提高了速度和效率,而不受数据源和结构的影响。 通过从一个屏幕创建聚合和可视化来加速解决问题,提供迭代、不间断的工作流程。

ES|QL 对于 SRE 的优势

使用 Elastic Observability 的 SRE 可以利用 ES|QL 来分析日志、指标、跟踪和分析数据,使他们能够通过单个查询查明性能瓶颈和系统问题。 在 Elastic Observability 中使用 ES|QL 管理高维和高基数数据时,SRE 具有以下优势:

  • 提高运营效率:通过使用 ES|QL,SRE 可以使用聚合值作为单个查询的阈值来创建更多可操作的通知,这些通知也可以通过 Elastic API 进行管理并集成到 DevOps 流程中。
  • 通过洞察增强分析:ES|QL 可以处理各种可观测数据,包括应用程序、基础设施、业务数据等,无论来源和结构如何。 ES|QL 可以轻松地通过附加字段和上下文丰富数据,从而允许通过单个查询创建仪表板可视化或问题分析。
  • 缩短解决问题的平均时间:ES|QL 与 Elastic Observability 的 AIOps 和 AI Assistant 结合使用,可通过识别趋势、隔离事件和减少误报来提高检测准确性。 这种上下文的改进有助于故障排除以及快速查明和解决问题。

Elastic Observability 中的 ES|QL 不仅增强了 SRE 更有效地管理客户体验、组织收入和 SLO 的能力,而且还通过提供上下文聚合数据来促进与开发人员和 DevOps 的协作。

在本博客中,我们将介绍 SRE 可以利用 ES|QL 的一些关键用例:

  • ES|QL 与 Elastic AI Assistant 集成,使用公共 LLM 和私有数据,增强了 Elastic Observability 中任何地方的分析体验。
  • SRE 可以在单个 ES|QL 查询中分解、分析和可视化来自多个来源和跨任何时间范围的可观察性数据。
  • 可以通过单个 ES|QL 查询轻松创建可操作的警报,从而增强操作。

我将通过展示 SRE 如何解决使用 OpenTelemetry 检测并在 Kubernetes 上运行的应用程序中的问题来完成这些用例。 OpenTelemetry (OTel) 演示位于 Amazon EKS 集群上,并配置了 Elastic Cloud 8.11。

你还可以查看我们的 Elastic Observability ES|QL 演示,该演示演示了可观察性的 ES|QL 功能。

ES|QL 与 AI 助手

作为 SRE,你正在使用 Elastic Observability 监控 OTel 仪表化应用程序,而在 Elastic APM 中,你会注意到 service map 中突出显示的一些问题。

使用 Elastic AI Assistant,你可以轻松要求进行分析,特别是,我们会检查应用程序服务的总体延迟情况。

My APM data is in traces-apm*. What's the average latency per service over the last hour? Use ESQL, the data is mapped to ECS

Elastic AI Assistant 生成一个 ES|QL 查询,我们在 AI Assistant 中运行该查询以获取所有应用程序服务的平均延迟列表。 我们可以很容易地看到前四名是:

  • load generator
  • front-end proxy
  • frontendservice
  • checkoutservice

通过 AI Assistant 中的简单自然语言查询,它生成了单个 ES|QL 查询,帮助列出跨服务的延迟。

注意到多个服务存在问题,我们决定从前端代理(front-end proxy)开始。 当我们研究细节时,我们看到了重大故障,并且通过 Elastic APM 故障关联,很明显前端代理没有正确完成对下游服务的调用。

Discover 中的 ES|QL 洞察力和上下文分析

了解应用程序在 Kubernetes 上运行后,我们会调查 Kubernetes 中是否存在问题。 我们特别想查看是否有任何服务存在问题。

我们在 Elastic Discover 的 ES|QL 中使用以下查询:

from metrics-* | where kubernetes.container.status.last_terminated_reason != "" and kubernetes.namespace == "default" | stats reason_count=count(kubernetes.container.status.last_terminated_reason) by kubernetes.container.name, kubernetes.container.status.last_terminated_reason | where reason_count > 0

ES|QL 帮助分析来自 Kubernetes 的 1,000 个/10,000 个指标事件,并突出显示由于 OOMKilled 而重新启动的两个服务。

当被问及 OOMKilled 时,Elastic AI Assistant 表示 pod 中的容器由于内存不足而被终止。

我们运行另一个 ES|QL 查询来了解电子邮件服务和产品目录服务的内存使用情况。

ES|QL 很容易发现平均内存使用量相当高。

我们现在可以进一步调查这两个服务的日志、指标和 Kubernetes 相关数据。 然而,在继续之前,我们创建一个警报来跟踪大量内存使用情况。

使用 ES|QL 发出可操作的警报

怀疑可能会再次出现的特定问题,我们只需创建一个警报,引入我们刚刚运行的 ES|QL 查询,该查询将跟踪内存利用率超过 50% 的任何服务。

我们修改最后一个查询以查找内存使用率高的任何服务:

FROM metrics*
| WHERE @timestamp >= NOW() - 1 hours
| STATS avg_memory_usage = AVG(kubernetes.pod.memory.usage.limit.pct) BY kubernetes.deployment.name | where avg_memory_usage > .5

通过该查询,我们创建一个简单的警报。 请注意如何将 ES|QL 查询引入警报中。 我们简单地将其与寻呼机职责联系起来。 但我们可以从多个连接器中进行选择,例如 ServiceNow、Opsgenie、电子邮件等。

通过此警报,我们现在可以轻松监控 pod 中内存利用率超过 50% 的任何服务。

使用 ES|QL 充分利用你的数据

在这篇文章中,我们展示了 ES|QL 为分析、操作和减少 MTTR 带来的强大功能。 综上所述,Elastic Observability 中 ES|QL 的三个用例如下:

  • ES|QL 与 Elastic AI Assistant 集成,使用公共 LLM 和私有数据,增强了 Elastic Observability 中任何地方的分析体验。
  • SRE 可以在单个 ES|QL 查询中分解、分析和可视化来自多个来源和跨任何时间范围的可观察性数据。
  • 可以通过单个 ES|QL 查询轻松创建可操作的警报,从而增强操作。

Elastic 邀请 SRE 和开发人员亲身体验这种变革性语言,并开启数据任务的新视野。 今天就在 https://ela.st/free-Trial上尝试一下,现在处于技术预览版。

本文中描述的任何特性或功能的发布和时间安排均由 Elastic 自行决定。 当前不可用的任何特性或功能可能无法按时交付或根本无法交付。

原文:Optimizing SRE efficiency and issue resolution with ES|QL in Elastic Observability, OTel, and Kubernetes | Elastic Blog

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/408426.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

谷歌连发 Gemini1.5、Gemma两种大模型,Groq让模型输出速度快18倍

本周,我们观察到以下AI领域的新动向和新趋势: 1.谷歌连发Gemini1.5和Gemma两种大模型, 其中Gemini1.5采用MoE架构,并拥有100万token上下文长度,相比Gemini 1.0性能大幅提升。Gemma是谷歌新推出的开源模型,…

项目实战:Qt监测操作系统物理网卡通断v1.1.0(支持windows、linux、国产麒麟系统)

若该文为原创文章,转载请注明出处 本文章博客地址:https://hpzwl.blog.csdn.net/article/details/136276999 红胖子(红模仿)的博文大全:开发技术集合(包含Qt实用技术、树莓派、三维、OpenCV、OpenGL、ffmpeg、OSG、单片机、软硬结…

32单片机基础:对射式红外传感器计次

接线如下图: 在HardWare建立两个文件:如图 COuntSensor.c 如何配置外部中断,根据下面图,我们需要把外部中断从GPIO到NVIC这一路出现的外设模块都配置好。把这条信号打通就OK了。 1.配置RCC:把我们这里涉及的外设时钟都打开,不打…

[算法沉淀记录] 排序算法 —— 冒泡排序

排序算法 —— 冒泡排序 基本概念 冒泡排序是一种简单的排序算法。它重复地遍历要排序的列表,一次比较两个元素,并交换它们的位置,如果它们不是按照升序排列的。这步遍历是重复进行的,直到没有再需要交换,也就是说该…

【MATLAB】 LMD信号分解+FFT傅里叶频谱变换组合算法

有意向获取代码,请转文末观看代码获取方式~ 展示出图效果 1 LMD分解算法 LMD (Local Mean Decomposition) 分解算法是一种信号分解算法,它可以将一个信号分解成多个局部平滑的成分,并且可以将高频噪声和低频信号有效地分离出来。LMD 分解算…

消息中间件篇之RabbitMQ-消息不丢失

一、生产者确认机制 RabbitMQ提供了publisher confirm机制来避免消息发送到MQ过程中丢失。消息发送到MQ以后,会返回一个结果给发送者,表示消息是否处理成功。 当消息没有到交换机就失败了,就会返回publish-confirm。当消息没有到达MQ时&…

打开 Camera app 出图,前几帧图像偏暗、偏色该怎样去避免?

1、问题背景 使用的安卓平台,客户的应用是要尽可能快的获取到1帧图像效果正常的图片。 但当打开 camera 启动出流后,前3-5帧图像是偏暗、偏色的,如下图所示,是抓取出流的前25帧图像, 前3帧颜色是偏蓝的,…

[嵌入式系统-33]:RT-Thread -18- 新手指南:三种不同的版本、三阶段学习路径

目录 前言:学习路径:入门学习-》进阶段学习》应用开发 一、RT-Thread版本 1.1 标准版 1.2 Nano 1.3 Smart版本 1.4 初学者制定学习路线 1.5 RT-Thread在线文档中心目录结构 1.6 学习和使用RT-Thread的三种场景 二、入门学习阶段:内…

架构设计:微服务架构实践

引言 前段时间做项目的时候有客户问到过我,什么微服务?微服务是一种架构风格,其中软件系统被构建为一组小型服务,每个服务都运行在自己的进程中并使用轻量级通信机制(如HTTP或消息队列)进行通信。这些服务…

Spring Boot与Netty:构建高性能的网络应用

点击下载《Spring Boot与Netty:构建高性能的网络应用》 1. 前言 本文将详细探讨如何在Spring Boot应用中集成Netty,以构建高性能的网络应用。我们将首先了解Netty的原理和优势,然后介绍如何在Spring Boot项目中集成Netty,包括详…

代码随想录算法训练营第三天

● 自己看到题目的第一想法 203.移除链表元素 方法一: 思路: 设置虚拟头节点 dummyhead 设置临时指针 cur 遍历 整个链表 循环: 如果 cur !nullptr &&cur->next !nullptr 则 遍历链表 否则结束遍历 如果 cur->next val 则…

C++ //练习 8.4 编写函数,以读模式打开一个文件,将其内容读入到一个string的vector中,将每一行作为一个独立的元素存于vector中。

C Primer(第5版) 练习 8.4 练习 8.4 编写函数,以读模式打开一个文件,将其内容读入到一个string的vector中,将每一行作为一个独立的元素存于vector中。 环境:Linux Ubuntu(云服务器&#xff09…

装修避坑干货|阳台洗衣柜洗衣机一体柜设计。福州中宅装饰,福州装修

装修的时候常常会在洗衣柜中嵌入洗衣机,其实阳台柜的安装并不像看起来的那么简单,下面给大家说说几个注意事项‼️ 01.水电位置 在安装阳台柜之前,务必确认水电管道的位置。确保阳台柜不会阻碍水电管道的使用,以免造成不必要的麻…

U盘乱码与文件丢失:恢复指南与预防策略

U盘乱码文件丢失是一种常见的技术问题,通常表现为存储在U盘中的文件名显示为不可识别的字符或文件无法正常打开,有时甚至文件会完全消失。这种情况可能由多种原因引起,包括但不限于文件系统损坏、不正确的拔插操作、病毒感染、兼容性问题等。…

花生壳内网穿透教程(图文并茂)

目录 前言: 使用教程: 1.注册账号 2.软件下载及安装: 3.账号绑定及花生壳的使用 4.内网穿透的配置(重点) 4.2 新增映射页面: 4.3 上面几种映射的区别: 4.4 上面TCP类型的区别:…

Linux进程信号 ----- (信号保存)

前言 信号从产生到执行,并不会被立即处理,这就意味着需要一种 “方式” 记录信号是否产生,对于 31 个普通信号来说,一个 int 整型就足以表示所有普通信号的产生信息了;信号还有可能被 “阻塞”,对于这种多状…

鸿蒙中的九种布局概述

鸿蒙中的九种布局概述 概述 鸿蒙开发中包含就种布局,分别为线性布局、层叠布局、弹性布局、相对布局、栅格布局、媒体布局、列表、网格、轮播。 线性布局 线性布局通过Row和Column进行构建,是其他布局的基础。其中Row是水平方向排列,Colu…

电路设计(25)——4位数字频率计的multisim仿真及PCB设计

1.设计要求 使用4位数码管,显示输入信号的频率。完成功能仿真后,用AD软件,画出原理图以及PCB。 2.电路设计 输入信号的参数为: 可见,输入为168HZ,测量值为170HZ,误差在可接受的范围内。 3.PCB设…

Jenkins解决Host key verification failed (2)

Jenkins解决Host key verification failed 分析原因情况 一、用OpenSSH的人都知ssh会把你每个你访问过计算机的公钥(public key)都记录在~/.ssh/known_hosts。当下次访问相同计算机时,OpenSSH会核对公钥。如果公钥不同,OpenSSH会发出警告,避免…

【Java程序设计】【C00299】基于Springboot的仓库管理系统(有论文)

基于Springboot的仓库管理系统(有论文) 项目简介项目获取开发环境项目技术运行截图 项目简介 这是一个基于Springboot的仓库管理系统,本系统有管理员角色权限; 系统整体功能有:个人信息管理、仓库管理、物资管理、物资…