挑战杯 基于大数据的股票量化分析与股价预测系统

文章目录

  • 0 前言
  • 1 课题背景
  • 2 实现效果
  • 3 设计原理
    • QTCharts
    • arma模型预测
    • K-means聚类算法
    • 算法实现关键问题说明
  • 4 部分核心代码
  • 5 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 基于大数据的股票量化分析与股价预测系统

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 课题背景

基于大数据的股票可视化分析平台设计,对股票数据进行预处理,清洗以及可视化分析,同时设计了软件界面。

2 实现效果

价格可视化
在这里插入图片描述
魔梯访问与指标计算

在这里插入图片描述
聚类分析
在这里插入图片描述

3 设计原理

QTCharts

简介

QtCharts是Qt自带的组件库,其中包含折线、曲线、饼图、棒图、散点图、雷达图等各种常用的图表。而在地面站开发过程中,使用折线图可以对无人机的一些状态数据进行监测,更是可以使用散点图来模拟飞机所在位置,实现平面地图的感觉。

使用Qt
Charts绘制,大概可以分为四个部分:数据(QXYSeries)、图表(QChart)、坐标轴(QAbstractAXis)和视图(QChartView)。这里就不一一给大家介绍了,下面给大家说一下QtCharts的配置安装。

QtCharts模块的C++类

在这里插入图片描述

arma模型预测

简介

ARMA模型,又称为ARMA
(p,q)模型。其核心思想就是当前正如名字所显示的,整个模型的核心就是要确定p和q这两个参数。其中,p决定了我们要用几个滞后时期的价格数据,而q决定了我们要用几个滞后时期的预测误差。

在这里插入图片描述

简单来说,ARMA模型做了两件事。一是基于趋势理论,用历史数据来回归出一个当前的价格预测,这个预测反映了自回归的思想。但是这个预测必然是有差异的,所以ARMA模型根据历史的预测误差也回归出一个当前的误差预测,这个预测反映了加权平均的思想。用价格预测加上误差预测修正,才最终得到一个理论上更加精确的最终价格预测。

比起简单的自回归模型或者以时间为基础的简单趋势预测模型,ARMA模型最大的优势,在于综合了趋势理论和均值回归理论,理论上的精确度会比较高。

    

    '''
        自回归滑动平均模型
    '''
    from statsmodels.tsa.arima_model import ARMA
    from itertools import product


​     

```
def myARMA(data):
    p = range(0, 9)
    q = range(0, 9)
    parameters = list(product(p, q))  # 生成(p,q)从(0,0)到(9,9)的枚举
    best_aic = float('inf')
    result = None
    for param in parameters:
        try:
            model = ARMA(endog=data, order=(param[0], param[1])).fit()
        except ValueError:
            print("参数错误:", param)
            continue
        aic = model.aic
        if aic < best_aic:  # 选取最优的aic
            best_aic = model.aic
            result = (model, param)
    return result
```


K-means聚类算法

基本原理

k-Means算法是一种使用最普遍的聚类算法,它是一种无监督学习算法,目的是将相似的对象归到同一个簇中。簇内的对象越相似,聚类的效果就越好。该算法不适合处理离散型属性,但对于连续型属性具有较好的聚类效果。

聚类效果判定标准

使各个样本点与所在簇的质心的误差平方和达到最小,这是评价k-means算法最后聚类效果的评价标准。

在这里插入图片描述

算法实现步骤

1)选定k值

2)创建k个点作为k个簇的起始质心。

3)分别计算剩下的元素到k个簇的质心的距离,将这些元素分别划归到距离最小的簇。

4)根据聚类结果,重新计算k个簇各自的新的质心,即取簇中全部元素各自维度下的算术平均值。

5)将全部元素按照新的质心重新聚类。

6)重复第5步,直到聚类结果不再变化。

7)最后,输出聚类结果。

算法缺点

虽然K-Means算法原理简单,但是有自身的缺陷:

1)聚类的簇数k值需在聚类前给出,但在很多时候中k值的选定是十分难以估计的,很多情况我们聚类前并不清楚给出的数据集应当分成多少类才最恰当。

2)k-means需要人为地确定初始质心,不一样的初始质心可能会得出差别很大的聚类结果,无法保证k-means算法收敛于全局最优解。

3)对离群点敏感。

4)结果不稳定(受输入顺序影响)。

5)时间复杂度高O(nkt),其中n是对象总数,k是簇数,t是迭代次数。

算法实现关键问题说明

K值的选定说明

根据聚类原则:组内差距要小,组间差距要大。我们先算出不同k值下各个SSE(Sum of
squared
errors)值,然后绘制出折线图来比较,从中选定最优解。从图中,我们可以看出k值到达5以后,SSE变化趋于平缓,所以我们选定5作为k值。

在这里插入图片描述

初始的K个质心选定说明

初始的k个质心选定是采用的随机法。从各列数值最大值和最小值中间按正太分布随机选取k个质心。

关于离群点

离群点就是远离整体的,非常异常、非常特殊的数据点。因为k-
means算法对离群点十分敏感,所以在聚类之前应该将这些“极大”、“极小”之类的离群数据都去掉,否则会对于聚类的结果有影响。离群点的判定标准是根据前面数据可视化分析过程的散点图和箱线图进行判定。

4 部分核心代码

#include "kmeans.h"
#include "ui_kmeans.h"

kmeans::kmeans(QWidget *parent) :
    QDialog(parent),
    ui(new Ui::kmeans)
{
    this->setWindowFlags(Qt::Dialog | Qt::WindowMinMaxButtonsHint | Qt::WindowCloseButtonHint);
    ui->setupUi(this);
}

kmeans::~kmeans()
{
    delete ui;
}

void kmeans::closeEvent(QCloseEvent *)
{
    end_flag=true;
}

void kmeans::on_pushButton_clicked()
{
    end_flag=false;
    //读取数据
    QFile sharpe("sharpe.txt");
    sharpe.open(QIODevice::ReadOnly|QIODevice::Text);
    std::vector<std::array<double,2>> data;
    while(!sharpe.atEnd())
    {
        QStringList linels=QString(sharpe.readLine()).split(',');
        qreal mean=linels[3].toDouble();
        qreal sd=linels[4].toDouble();
        if(mean>-0.06&&mean<0.06&&sd<0.12)data.push_back({mean,sd});
    }
    std::random_shuffle(data.begin(),data.end());
    sharpe.close();
    //聚类
    ui->pushButton->setText("聚类中...");
    QApplication::processEvents();
    auto labels=std::get<1>(dkm::kmeans_lloyd(data,9));
    ui->pushButton->setText("开始");
    QApplication::processEvents();
    //作图
    QChart *chart = new QChart();
    //chart->setAnimationOptions(QChart::SeriesAnimations);
    //chart->legend()->setVisible(false);

    QList<QScatterSeries*> serieses;
    QList<QColor> colors{
        QColor(Qt::black),
                QColor(Qt::cyan),
                QColor(Qt::red),
                QColor(Qt::green),
                QColor(Qt::magenta),
                QColor(Qt::yellow),
                QColor(Qt::gray),
                QColor(Qt::blue),
                QColor("#A27E36")
    };
    for(int i=0;i<9;i++){
        QScatterSeries *temp = new QScatterSeries();
        temp->setName(QString::number(i));
        temp->setColor(colors[i]);
        temp->setMarkerSize(10.0);
        serieses.append(temp);
        chart->addSeries(temp);
    }
    chart->createDefaultAxes();

    /*
                             v4
-------------------------------------------------------------
      Percentiles      Smallest
 1%     -.023384        -.35985
 5%    -.0115851       -.349373
10%    -.0078976       -.325249       Obs             613,849
25%    -.0037067       -.324942       Sum of Wgt.     613,849

50%     .0000567                      Mean           .0004866
                        Largest       Std. Dev.      .0130231
75%     .0041332        1.28376
90%     .0091571        1.52169       Variance       .0001696
95%     .0132541        2.73128       Skewness       95.21884
99%     .0273964        4.56203       Kurtosis       28540.15

                             v5
-------------------------------------------------------------
      Percentiles      Smallest
 1%     .0073016       4.68e-07
 5%     .0112397       7.22e-07
10%     .0135353       7.84e-07       Obs             613,849
25%     .0180452       8.21e-07       Sum of Wgt.     613,849

50%     .0248626                      Mean           .0282546
                        Largest       Std. Dev.      .0213631
75%     .0343356         3.2273
90%     .0458472        3.32199       Variance       .0004564
95%     .0549695        4.61189       Skewness       68.11651
99%     .0837288        4.75981       Kurtosis       11569.69

     */

    QValueAxis *axisX = qobject_cast<QValueAxis *>(chart->axes(Qt::Horizontal).at(0));
    axisX->setRange(-0.06,0.06);
    axisX->setTitleText("平均值");
    axisX->setLabelFormat("%.2f");

    QValueAxis *axisY = qobject_cast<QValueAxis *>(chart->axes(Qt::Vertical).at(0));
    axisY->setRange(0,0.12);
    axisY->setTitleText("标准差");
    axisY->setLabelFormat("%.2f");

    ui->widget->setRenderHint(QPainter::Antialiasing);
    ui->widget->setChart(chart);

    int i=0;
    auto labelsiter=labels.begin();
    for(auto &&point : data){
        if(end_flag)return;
        serieses[*labelsiter]->append(QPointF(point[0],point[1]));
        i++;
        labelsiter++;
        if(i%1000==0){
            QApplication::processEvents();
        }
    }
}

void kmeans::on_pushButton_2_clicked()
{
    end_flag=true;
}

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/408261.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

onlyoffice api开发

编写代码 按照https://api.onlyoffice.com/editors/basic编写代码 <html> <head><meta charset"UTF-8"><meta name"viewport"content"widthdevice-width, user-scalableno, initial-scale1.0, maximum-scale1.0, minimum-scal…

【编译原理】用Python实现LR(0)语法分析

实验内容 对于给定的如下文法&#xff0c;编写调试一个上下文无关文法的LR(0)分析程序。 文法G’为&#xff1a; S → E S\to E S→E E → a A E\to aA E→aA E → b B E \to bB E→bB A → c A A\to cA A→cA A → d A\to d A→d B → c B B\to cB B→cB B → d B\to …

【C#】CNC 机器人的刀具路径生成软件PathCAM源码解析-Geometry

1. Loaders 1.1 DAE_Loader.cs 1.2 OBJ_Loader.cs 1.3 STL_Loader.cs 2. AnalyzedTriangleMesh.cs AnalyzedTriangleMesh类是一个用于分析和处理三角形网格&#xff0c;可以被用于将网格拆分为更小的部件或者识别特定特征的对象&#xff0c;如打印准备或几何分析&#xff0c;非…

网络原理——HTTP

1. 什么是HTTP协议 HTTP是应用层的协议。Java最主要的应用场景是做网站&#xff0c;而网站由 后端&#xff08;HTTP服务器&#xff09; 和 前端&#xff08;浏览器&#xff09;组成&#xff0c;HTTP协议就是负责这里后端和前端的数据交互。 HTTP3.0 之前在传输层是通过 TCP传…

如何移除禁用WordPress默认小工具(附WordPress默认小工具名称)

WordPress 自带的小工具非常多&#xff0c;但是我们用到的也就那么几种&#xff0c;甚至一种都不会用到&#xff0c;所以很有必要注销&#xff08;去除&#xff09;掉一些不用的小工具。实现的方法也很简单&#xff0c;只需将以下代码&#xff0c;根据自己的情况删除需要用的小…

黄仁勋最新专访:机器人基础模型可能即将出现,新一代GPU性能超乎想象

最近&#xff0c;《连线》的记者采访了英伟达CEO黄仁勋。 记者表示&#xff0c;与Jensen Huang交流应该带有警告标签&#xff0c;因为这位Nvidia首席执行官对人工智能的发展方向如此投入&#xff0c;以至于在经过近 90 分钟的热烈交谈后&#xff0c;我&#xff08;指代本采访的…

复旦大学MBA:AIGC时代,科技与商业迸发更绚烂的火花

ChatGPT问世以来&#xff0c;AI技术及应用进入一个全速推进的通道&#xff0c;快速迈入通用大模型时代。从AGI(人工通用智能&#xff09;到AIGC(AI多模态内容生成&#xff09;&#xff0c;AI正在飞速重塑各个行业、人类生活乃至人类的未来。在商业领域更是给营销场景和营销工具…

134 Linux 系统编程11 ,readlink命令,文件目录rwx权限差异,目录操作函数

一 readlink 命令 前面知道&#xff0c;如果a.soft是一个软链接&#xff0c;我们使用 cat a.soft,会直接查看这个软链接指向的文件 那么我们就是想看这个软链接是啥&#xff0c;可以使用 readlink a.soft 二 获取工作目录 getcwd函数 获取进程当前工作目录 (卷3&#xff0c;标…

软考 系统分析师系列知识点之需求获取(1)

所属章节&#xff1a; 第11章. 软件需求工程 第2节. 需求获取 需求获取是一个确定和理解不同的项目干系人的需求和约束的过程。需求获取是一件看上去很简单、做起来却很难的事情。需求获取是否科学、准备是否充分&#xff0c;对获取出来的结果影响很大&#xff0c;这是因为大部…

Studio One 6 for Mac v6.5.1激活破解版(音乐制作工具)

Studio One是一款专业的音乐制作软件&#xff0c;由美国PreSonus公司开发。该软件提供了全面的音频编辑和混音功能&#xff0c;包括录制、编曲、合成、采样等多种工具&#xff0c;可用于制作各种类型的音乐&#xff0c;如流行音乐、电子音乐、摇滚乐等。 Studio One 6是一款功…

Elasticsearch安装需编译的版本分词器,出现的编译问题

一般来说&#xff0c;网上很多教程在讲如何安装es的ik分词器&#xff0c;包括项目文档也有提及&#xff1a;​​​​​​Releases medcl/elasticsearch-analysis-ik GitHub 如果是对应版本作者已经编译好的还比较容易安装&#xff0c;如下图&#xff1a; 但如果是只有源代码…

vue-router 三级路由,路由跳转页面异常白屏或404,或刷新三级路由页面后一级和二级路由菜单丢失

问题描述 情况1. vue-router 定义三级路由&#xff0c;路由跳转了&#xff0c;页面404或者白屏情况2. 点击菜单三级路由后&#xff0c;刷新页面后一级和二级路由菜单丢失 解决方案&#xff1a; 某些时候是因为二级和三级的路由共用router-view&#xff0c;可以使用router-vi…

基于ssm框架的高校班级管理系统设计与实现

为解决当前高校班级管理中管理方式落后、手段落后及效率低下等问题而以当前主流的互联网技术设计一款高校班级管理系统。该系统采用B/S模式的设计思路而将前端&#xff08;JSP技术&#xff09;和后端&#xff08;SSM框架MySQL数据库&#xff09;整合于一体并通过Java语言代码编…

Android java中包的使用

一.包的使用 为了更好的实现项目中类的管理&#xff0c;提供包的概念。 package语句作为Java源文件的第一条语句&#xff0c;指明该文件中定义的类所在的包。(若缺省该语句&#xff0c;则指定为无名包)。 它的格式为&#xff1a;package 顶层包名.子包名 ; 二.java中主要的包…

ES坑-创建索引使用_下划线-黑马旅游搜不到

学ES的时候&#xff0c;星级过滤无效 找不到数据。 需要 但是我们在创建的时候使用的是keyword 通过研究发现&#xff0c;我们导入数据的时候应该默认的为starName 我get库时候发现有2个字段 所以通过star_name搜索因为都是空数据搜不到&#xff0c;而starName类型为text所以…

LeetCode 0235.二叉搜索树的最近公共祖先:用搜索树性质(不遍历全部节点)

【LetMeFly】235.二叉搜索树的最近公共祖先&#xff1a;用搜索树性质&#xff08;不遍历全部节点&#xff09; 力扣题目链接&#xff1a;https://leetcode.cn/problems/lowest-common-ancestor-of-a-binary-search-tree/ 给定一个二叉搜索树, 找到该树中两个指定节点的最近公…

单机取证-信息安全管理与评估-2022年国赛真题-环境+wp

🍬 博主介绍 博主介绍:大家好,我是 Mikey ,很高兴认识大家~ 主攻:【应急响应】 【python】 【数字取证】【单机取证】【流量分析】【MISC】 🎉点赞➕评论➕收藏 == 养成习惯(一键三连)😋 🎉欢迎关注💗一起学习👍一起讨论⭐️一起进步 作者水平有限,欢迎各…

10-pytorch-完整模型训练

b站小土堆pytorch教程学习笔记 一、从零开始构建自己的神经网络 1.模型构建 #准备数据集 import torch import torchvision from torch.utils.tensorboard import SummaryWriterfrom model import * from torch.utils.data import DataLoadertrain_datatorchvision.datasets.…

WPF 启动项目 Grid、StackPanel 布局

WPF 启动项目 <!--x:Class"WPF_Study.App" 对应类&#xff1a;WPF_Study.App--> <!--xmlns:local"clr-namespace:WPF_Study" 命名空间&#xff1a;WPF_Study--> <Application x:Class"WPF_Study.App"xmlns"http://schema…

网络原理TCP之“三次握手“

TCP内核中的建立连接 众所周知,TCP是有连接的. 当我们在客户端敲出socket new Socket(serverIp,severPort)时,就在系统内核就在建立连接 真正建立连接是在系统内核中建立的,我们程序员只是调用相关的api. 在此处,我们把TCP的建立连接称为三次握手. 系统在内核建立连接时如上…