探索水下低光照图像检测性能,基于YOLOv3全系列【yolov3tiny/yolov3/yolov3spp】参数模型开发构建海底生物检测识别分析系统

海底这类特殊数据场景下的检测模型开发相对来说比较少,在前面的博文中也有一些涉及,感兴趣的话可以自行移步阅读即可:

《尝试探索水下目标检测,基于yolov5轻量级系列模型n/s/m开发构建海底生物检测系统》

《基于YOLOv5+C3CBAM+CBAM注意力的海底生物[海参、海胆、扇贝、海星]检测识别分析系统》

《基于自建数据集【海底生物检测】使用YOLOv5-v6.1/2版本构建目标检测模型超详细教程》 

《探索水下低光照图像检测性能,基于轻量级YOLOv8模型开发构建海底生物检测识别分析系统》

《探索水下低光照图像检测性能,基于YOLOv7【tiny/l/x】不同系列参数模型开发构建海底生物检测识别分析系统》

《探索水下低光照图像检测性能,基于YOLOv8全系列【n/s/m/l/x】参数模型开发构建海底生物检测识别分析系统》

《探索水下低光照图像检测性能,基于DETR(DEtection TRansformer)模型开发构建海底生物检测识别分析系统》

在前文我们已经实践开发了YOLO系列的模型,本文的主要想法是想要基于早期的YOLOv3来开发构建海底生物检测识别系统。

首先看下实例效果:

简单看下实例数据情况:

本文是选择的比较经典的也是比较古老的YOLOv3来进行模型的开发,YOLOv3(You Only Look Once v3)是一种目标检测算法模型,它是YOLO系列算法的第三个版本。该算法通过将目标检测任务转化为单个神经网络的回归问题,实现了实时目标检测的能力。

YOLOv3的主要优点如下:

实时性能:YOLOv3采用了一种单阶段的检测方法,将目标检测任务转化为一个端到端的回归问题,因此具有较快的检测速度。相比于传统的两阶段方法(如Faster R-CNN),YOLOv3能够在保持较高准确率的情况下实现实时检测。

多尺度特征融合:YOLOv3引入了多尺度特征融合的机制,通过在不同层级的特征图上进行检测,能够有效地检测不同尺度的目标。这使得YOLOv3在处理尺度变化较大的场景时表现出较好的性能。

全局上下文信息:YOLOv3在网络结构中引入了全局上下文信息,通过使用较大感受野的卷积核,能够更好地理解整张图像的语义信息,提高了模型对目标的识别能力。

简洁的网络结构:YOLOv3的网络结构相对简洁,只有75个卷积层和5个池化层,使得模型较易于训练和部署,并且具有较小的模型体积。

YOLOv3也存在一些缺点:

较低的小目标检测能力:由于YOLOv3采用了较大的感受野和下采样操作,对于小目标的检测能力相对较弱。当场景中存在大量小目标时,YOLOv3可能会出现漏检或误检的情况。

较高的定位误差:由于YOLOv3将目标检测任务转化为回归问题,较粗糙的特征图和较大的感受野可能导致较高的定位误差。这意味着YOLOv3在需要较高精度的目标定位时可能会受到一定的限制。

YOLOv3是YOLO系列里程碑性质的模型,随着不断地演变和发展,目前虽然已经在性能上难以与YOLOv5之类的模型对比但是不可否认其做出的突出贡献。

训练数据配置文件如下:

# path
train: ./dataset/images/train/
val: ./dataset/images/test/


# number of classes
nc: 4

 
# class names
names: ['holothurian', 'echinus', 'scallop', 'starfish']

我们开发构建了yolov3全系列的参数模型,包含:yolov3-tiny、yolov3和yolov3-spp,实验阶段保持完全相同的参数设置,等待训练完成我们来整体对比可视化。

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能.F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。

【loss曲线】

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。

【Precision曲线】
精确率曲线(Precision-Recall Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。

【mAP0.5】
mAP0.5,也被称为mAP@0.5或AP50,指的是当Intersection over Union(IoU)阈值为0.5时的平均精度(mean Average Precision)。IoU是一个用于衡量预测边界框与真实边界框之间重叠程度的指标,其值范围在0到1之间。当IoU值为0.5时,意味着预测框与真实框至少有50%的重叠部分。
在计算mAP0.5时,首先会为每个类别计算所有图片的AP(Average Precision),然后将所有类别的AP值求平均,得到mAP0.5。AP是Precision-Recall Curve曲线下面的面积,这个面积越大,说明AP的值越大,类别的检测精度就越高。
mAP0.5主要关注模型在IoU阈值为0.5时的性能,当mAP0.5的值很高时,说明算法能够准确检测到物体的位置,并且将其与真实标注框的IoU值超过了阈值0.5。

【mAP0.5:0.95】
mAP0.5:0.95,也被称为mAP@[0.5:0.95]或AP@[0.5:0.95],表示在IoU阈值从0.5到0.95变化时,取各个阈值对应的mAP的平均值。具体来说,它会在IoU阈值从0.5开始,以0.05为步长,逐步增加到0.95,并在每个阈值下计算mAP,然后将这些mAP值求平均。
这个指标考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。当mAP0.5:0.95的值很高时,说明算法在不同阈值下的检测结果均非常准确,覆盖面广,可以适应不同的场景和应用需求。
对于一些需求比较高的场合,比如安全监控等领域,需要保证高的准确率和召回率,这时mAP0.5:0.95可能更适合作为模型的评价标准。
综上所述,mAP0.5和mAP0.5:0.95都是用于评估目标检测模型性能的重要指标,但它们的关注点有所不同。mAP0.5主要关注模型在IoU阈值为0.5时的性能,而mAP0.5:0.95则考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。

从实验结果综合对比来看不难看出:tiny系列的模型效果最差,被其他系列的模型拉开了明显的差距,yolov3和yolov3-spp两款模型达到了相近的性能,且参数量相近。我们考虑最终选择使用yolov3系列的模型来作为最终的推理模型。

训练可视化如下所示:

Batch实例如下:

感兴趣的话也都可以自行动手尝试下!

如果自己不具备开发训练的资源条件或者是没有时间自己去训练的话这里我提供出来对应的训练结果可供自行按需索取。

单个模型的训练结果默认YOLOv3-tiny

 全系列三个模型的训练结果总集

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/406267.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Element table 实现表格行、列拖拽功能

安装包 npm install sortablejs --save <template><div class"draggable" style"padding: 20px"><el-table row-key"id" :data"tableData" style"width: 100%" border><el-table-columnv-for"(it…

【Linux】 faillock 命令使用

faillock 命令 faillock 命令是 PAM (Pluggable Authentication Modules) 的一部分&#xff0c;它被设计用来跟踪失败的登录尝试&#xff0c;并在连续失败尝试超过某个阈值时锁定账户。这个功能可以帮助系统管理员识别和防止暴力破解攻击。当一个用户连续多次输入错误的密码后&…

如何开发自己的npm包并上传到npm官网可以下载

目录 搭建文件结构 开始编写 发布到npm 如何下载我们发布的npm包 搭建文件结构 先创建新文件夹,按照下面的样子布局 .├── README.md //说明文档 ├── index.js //主入口 ├── lib //功能文件 └── tests //测试用例 然后再此根目录下初始化package包 npm init…

Cartographer 构建约束优化问题

计算优化的思路&#xff0c;需要两种坐标变换&#xff0c;用两种坐标变化的残差求解。 第一种残差 将节点与子图原点在global坐标系下的相对位姿与约束的差值作为残差项 第一种坐标变换&#xff1a;节点与子图原点在global坐标系下的坐标变换 第二种坐标变换&#xff1a;子图内…

NXP实战笔记(八):S32K3xx基于RTD-SDK在S32DS上配置LCU实现ABZ解码

目录 1、概述 2、SDK配置 2.1、IO配置 2.2、TRGMUX配置 2.3、LCU配置 2.4、Trgmux配置 2.5、Emios配置 2.6、代码实现 1、概述 碰到光电编码器、磁编码器等,有时候传出来的位置信息为ABZ的方式,在S32K3里面通过TRGMUX、LCU、Emios结合的方式可以实现ABZ解码。 官方…

【Pytorch】从MoCo看无监督对比学习;从SupCon看有监督对比学习

目录 无监督对比学习&#xff1a;Moco文章内容理解代码解释 有监督对比学习&#xff1a;Supervised Contrastive Learning文章内容理解 无监督对比学习&#xff1a;Moco 文章内容理解 以下内容全部来自于&#xff1a;自监督学习-MoCo-论文笔记. 侵删 论文&#xff1a;Momentu…

vue : 无法加载文件 C:\Program Files\nodejs\node_global\vue.ps1,因为在此系统上禁止运行脚本。

解决方法&#xff1a; 打开PowerShell&#xff0c;在命令框输入set-ExecutionPolicy RemoteSigned 在PowerShell中输入会出现如下图&#xff0c;输入y即可。

【MATLAB】 RLMD信号分解+FFT傅里叶频谱变换组合算法

有意向获取代码&#xff0c;请转文末观看代码获取方式~ 展示出图效果 1 RLMD分解算法 RLMD&#xff08;Robust Local Mode Decomposition&#xff09;是一种鲁棒的局部模态分解方法。它是通过在局部区间内对信号进行多项式拟合&#xff0c;提取局部特征&#xff0c;进而分解信…

【Vuforia+Unity】AR07-实现识别条码、二维码内容功能(Barcode Scanner)

Barcode Scanner in Unity | Vuforia Library官方教程,写的很详细,本教程主要参考对象! 主要实现扫描生活中常见的二维码,然后弹出二维码链接,当然我们也可以再次回调自定义函数,弹出数字内容,AR内容效果! 支持的二维码: 局限性 条码扫描组件还定义检测和跟踪的条形…

2024年2月前端资讯动态:JSR新仓库革新及Set方法等全新特性

2024年2月前端技术领域再次迎来了一系列激动人心的更新和进展。无论是新兴的包仓库JSR&#xff0c;还是JavaScript提案中的Set方法、Array.prototype.with()的加入&#xff0c;都预示着前端开发的未来将更加灵活和强大。本文将为您详细介绍这些技术的最新动态&#xff0c;帮助您…

【电路笔记】-RC放电电路

RC放电电路 文章目录 RC放电电路1、概述2、RC放电电路3、RC放电电路示例当电压源从完全充电的 RC 电路中移除时,电容器 C 将通过电阻 R 放电。 1、概述 RC 放电电路利用电阻器-电容器组合的固有 RC 时间常数以指数衰减率对电容器进行放电。 在之前的 RC 充电电路教程中,我们…

挑战30天学完Python:Day18 正则表达式

&#x1f4d8; Day 18 &#x1f389; 本系列为Python基础学习&#xff0c;原稿来源于 30-Days-Of-Python 英文项目&#xff0c;大奇主要是对其本地化翻译、逐条验证和补充&#xff0c;想通过30天完成正儿八经的系统化实践。此系列适合零基础同学&#xff0c;或仅了解Python一点…

【区块链】联盟链

区块链中的联盟链 写在最前面**FAQs** 联盟链&#xff1a;区块链技术的新兴力量**联盟链的定义****联盟链的技术架构**共识机制智能合约加密技术身份认证 **联盟链的特点**高效性安全性可控性隐私保护 **联盟链的应用场景****金融服务****供应链管理****身份验证****跨境支付**…

2024云服务器ECS_云主机_服务器托管_e实例-阿里云

阿里云服务器ECS英文全程Elastic Compute Service&#xff0c;云服务器ECS是一种安全可靠、弹性可伸缩的云计算服务&#xff0c;阿里云提供多种云服务器ECS实例规格&#xff0c;如ECS经济型e实例、通用算力型u1、ECS计算型c7、通用型g7、GPU实例等&#xff0c;阿里云服务器网al…

【风格迁移】CAST:对比学习,从图像特征而非其二阶统计量(Gram矩阵)中学习风格

CAST&#xff1a;对比学习&#xff0c;从图像特征而非其二阶统计量&#xff08;Gram矩阵&#xff09;中学习风格 提出背景5 why 分析5 so分析 CAST 框架多层风格投影器领域增强模块生成网络 效果对比 StyleGAN 提出背景 论文&#xff1a;https://arxiv.org/pdf/2205.09542.pdf…

现货白银交易时间笔记

现货白银是效率和收益率“双高”的投资工具&#xff0c;但对于不了解这个品种的投资者来说&#xff0c;在正式展开交易之前&#xff0c;可能需要先经历一个学习的过程&#xff0c;才能全面地了解它的特性&#xff0c;而了解过程往往是从它的交易时间开始。 现货白银实现24小时交…

Django学习笔记-forms使用

1.创建forms.py文件,导入包 from django import forms from django.forms import fields from django.forms import widgets2. 创建EmployeeForm,继承forms.Form 3.创建testform.html文件 4.urls.py添加路由 5.views中导入forms 创建testform,编写代码 1).如果请求方式为GET,…

Kotlin 基本语法5 继承,接口,枚举,密封

1.继承与重写的Open关键字 open class Product(val name:String ) {fun description() "Product: $name"open fun load() "Nothing .."}class LuxuryProduct:Product("Luxury"){//继承需要调用 父类的主构造函数override fun load(): String {…

Clickhouse的安装

1.准备工作 确定防火墙处于关闭状态 ulimit -a 2.CentOS取消打开文件数限制 &#xff08;1&#xff09;在 hadoop102 的 /etc/security/limits.conf 文件的末尾加入以下内容 sudo vim /etc/security/limits.conf * soft nofile 65536 * hard nofile 65536 * soft nproc …

如何在Pycharm中导入第三方库(以pyecharts为例子)

打开Pycharm 点击右上角文件->设置->项目->pythonProject&#xff08;Python解释器&#xff09; 点击下图号 下一步&#xff1a;在搜索栏中直接搜索第三方包pyecharts并安装即可 以上便为使用Pycharm安装第三方库的全过程。 温馨小提示&#xff0c;如果大家在Pychar…