C/C++内存管理学习【new】

文章目录

    • 一、C/C++内存分布
    • 二、C语言中动态内存管理方式:malloc/calloc/realloc/free
    • 三、C++内存管理方式
    • 3.1 new/delete操作内置类型
    • 3.2 new和delete操作自定义类型
    • 四、operator new与operator delete函数
    • 五、new和delete的实现原理
      • 5.1 内置类型
    • 六、定位new表达式(placement-new)
    • 七、常见面试题
      • 7.1 内存泄漏
      • 7.2 内存泄漏分类
      • 7.3 如何检测内存泄漏
      • 7.4 如何避免内存泄漏

一、C/C++内存分布

  • 在学习之前我们先看一下下面这些代码都分布在哪里?
int globalVar = 1;
static int staticGlobalVar = 1;
void Test()
{
	static int staticVar = 1;
	int localVar = 1;
	int num1[10] = { 1, 2, 3, 4 };
	char char2[] = "abcd";
	const char* pChar3 = "abcd";
	int* ptr1 = (int*)malloc(sizeof(int) * 4);
	int* ptr2 = (int*)calloc(4, sizeof(int));
	int* ptr3 = (int*)realloc(ptr2, sizeof(int) * 4);
	free(ptr1);
	free(ptr3);
}
  1. 选择题:

选项: A.栈 B.堆 C.数据段(静态区) D.代码段(常量区)

  • globalVar在哪里?C
  • staticGlobalVar在哪里?C
  • staticVar在哪里?C
  • localVar在哪里?A
  • num1 在哪里?A

  • char2在哪里?A
    • 字符串在常量区,char2会栈上开辟一个数组,然后将常量区的字符串拷贝过到栈上,所以结果是A,上题的num1是直接在栈上开辟的,所以相似
  • *char2在哪里?A
    • 这个上题说过了不讲了
  • pChar3在哪里?A
    • const修饰的是代表常变量,不代表就在常量区,pChar3是栈上的一个变量,指向了常量区的字符串
  • *pChar3在哪里?D
    • 常量区的字符串,解引用就是找的常量区
  • ptr1在哪里?A
    • 也是栈上的一块变量
  • *ptr1在哪里?B
    • 开辟的空间在堆上

  1. 填空题:
  • sizeof(num1) = 40;
  • sizeof(char2) = 5;
  • strlen(char2) = 4;
  • sizeof(pChar3) = 4/8;
  • strlen(pChar3) = 4;
  • sizeof(ptr1) = 4/8;
  1. sizeof 和 strlen 区别?
  • 这里具体可以移步到C语言指针章节,最后面有详细的讲解

在这里插入图片描述

【说明】

  1. 栈又叫堆栈–非静态局部变量/函数参数/返回值等等,栈是向下增长的。
  2. 内存映射段是高效的I/O映射方式,用于装载一个共享的动态内存库。用户可使用系统接口创建共享共享内存,做进程间通信。
  3. 堆用于程序运行时动态内存分配,堆是可以上增长的。
  4. 数据段–存储全局数据和静态数据。
  5. 代码段–可执行的代码/只读常量。

  • 为什么要分这些区域

    • 为了方便管理,程序中有各种不同的数据
  • 这些区域哪个区域是我们需要重点关注的?

    • 堆【堆留给我们自己自主控制的】

二、C语言中动态内存管理方式:malloc/calloc/realloc/free

void Test()
{
	int* p1 = (int*)malloc(sizeof(int));
	free(p1);
	// 1.malloc/calloc/realloc的区别是什么?
	int* p2 = (int*)calloc(4, sizeof(int));
	int* p3 = (int*)realloc(p2, sizeof(int) * 10);
	// 这里需要free(p2)吗?
	free(p3);
}

【面试题】

  • malloc/calloc/realloc的区别?

    • malloc是在内存中直接开辟一块空间
    • calloc会在开辟的时候进行初始化【初始化成0】
    • realloc可以进行已开辟的空间进行扩容

三、C++内存管理方式

  • C语言内存管理方式在C++中可以继续使用,但有些地方就无能为力,而且使用起来比较麻烦,因此C++又提出了自己的内存管理方式:通过new和delete操作符进行动态内存管理。

3.1 new/delete操作内置类型

void Test()
{
	// 动态申请一个int类型的空间
	int* ptr4 = new int;
	// 动态申请一个int类型的空间并初始化为10
	int* ptr5 = new int(10);
	// 动态申请10个int类型的空间
	int* ptr6 = new int[3];
	delete ptr4;
	delete ptr5;
	delete[] ptr6;
}

在这里插入图片描述

在这里插入图片描述

  • new10个对象进行初始化,后面跟上大括号进行即可
int* p2 = new int[10] {1, 2, 3, 4, 5, 6, 7};	

在这里插入图片描述

  • 这里要一定注意,要匹配着使用

注意:申请和释放单个元素的空间,使用new和delete操作符,申请和释放连续的空间,使用new[]和delete[],注意:匹配起来使用。

3.2 new和delete操作自定义类型

class A
{
public:
	A(int a = 0)
		: _a(a)
	{
		cout << "A():" << this << endl;
	}
	~A()
	{
		cout << "~A():" << this << endl;
	}
private:
	int _a;
};

int main()
{
	// new/delete 和 malloc/free最大区别是 new/delete对于【自定义类型】除了开空间还会调用构造函数和析构函数
	A* p1 = (A*)malloc(sizeof(A));
	A* p2 = new A(1);
	free(p1);
	delete p2;
	
	// 内置类型是几乎是一样的
	int* p3 = (int*)malloc(sizeof(int)); // C
	int* p4 = new int;
	free(p3);
	delete p4;
	
	A* p5 = (A*)malloc(sizeof(A) * 10);
	A* p6 = new A[10];
	free(p5);
	delete[] p6;
	
	return 0;
}

在这里插入图片描述

小结:在申请自定义类型的空间时,new会调用构造函数,delete会调用析构函数,而malloc与free不会。

  • 在我们使用malloc的时候,都需要手动检查,而new失败了就会抛异常
struct ListNode
{
	ListNode* _next;
	int _val;

	ListNode(int val)
		:_next(nullptr)
		, _val(val)
	{}
};



// 创建的不带哨兵位
ListNode* CreateList(int n)
{
	ListNode head(-1);  // 哨兵位

	ListNode* tail = &head;
	int val;
	printf("请依次输入%d个节点的值:>", n);
	for (int i = 0; i < n; i++)
	{
		cin >> val;
		tail->_next = new ListNode(val);
		tail = tail->_next;
	}

	return head._next;
}

void func()
{
	int n = 1;
	while (1)
	{
		int* p = new int[1024 * 1024 * 100];

		cout << n << "->" << p << endl;
		++n;
	}
}

int main()
{
	// 1、用法上,变简洁了
	int* p0 = (int*)malloc(sizeof(int));
	int* p1 = new int;
	int* p2 = new int[10]; // new 10个int对象

	// 2、可以控制初始化
	int* p3 = new int(10); // new 1个int对象,初始化成10
	int* p4 = new int[10] { 1, 2, 3, 4, 5 };

	// 3、自定义类型,开空间+构造函数
	// 4、new失败了以后抛异常,不需要手动检查
	ListNode* node1 = new ListNode(1);
	ListNode* node2 = new ListNode(2);
	ListNode* node3 = new ListNode(3);
	//...
	ListNode* list1 = CreateList(5);

	delete p3;
	delete[] p4;
	delete p1;
	delete[] p2;


	// 抛异常
	try
	{
		func();
	}
	catch (const exception& e)
	{
		cout << e.what() << endl;
	}

	return 0;
}

四、operator new与operator delete函数

  • new和delete是用户进行动态内存申请和释放的操作符,operator new 和operator delete是系统提供的全局函数,new在底层调用operator new全局函数来申请空间,delete在底层通过operator delete全局函数来释放空间。

  • operator new:该函数实际通过malloc来申请空间,当malloc申请空间成功时直接返回申请空间失败,尝试执行空间不足应对措施,如果改应对措施用户设置了,则继续申请,否则抛异常。

void* __CRTDECL operator new(size_t size) _THROW1(_STD bad_alloc)
{
	// try to allocate size bytes
	void* p;
	while ((p = malloc(size)) == 0)
		if (_callnewh(size) == 0)
		{
			// report no memory
			// 如果申请内存失败了,这里会抛出bad_alloc 类型异常
			static const std::bad_alloc nomem;
			_RAISE(nomem);
		}
	return (p);
}
/*
operator delete: 该函数最终是通过free来释放空间的
*/
void operator delete(void* pUserData)
{
	_CrtMemBlockHeader* pHead;
	RTCCALLBACK(_RTC_Free_hook, (pUserData, 0));
	if (pUserData == NULL)
		return;
	_mlock(_HEAP_LOCK); /* block other threads */
	__TRY
		/* get a pointer to memory block header */
		pHead = pHdr(pUserData);
	/* verify block type */
	_ASSERTE(_BLOCK_TYPE_IS_VALID(pHead->nBlockUse));
	_free_dbg(pUserData, pHead->nBlockUse);
	__FINALLY
		_munlock(_HEAP_LOCK); /* release other threads */
	__END_TRY_FINALLY
		return;
}
/*
free的实现
*/
#define free(p) _free_dbg(p, _NORMAL_BLOCK)
  • 通过上述两个全局函数的实现知道,operator new 实际也是通过malloc来申请空间,如果malloc申请空间成功就直接返回,否则执行用户提供的空间不足应对措施,如果用户提供该措施就继续申请,否则就抛异常。operator delete 最终是通过free来释放空间的。

  • 我们通过汇编也可以看到,这些最后还是分别调用malloc和free的

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

  • operator new对malloc 的封装,失败抛异常实现new
  • operator delete对free的封装
class Stack
{
public:
	Stack()
	{
		_a = (int*)malloc(sizeof(int) * 4);
		_top = 0;
		_capacity = 4;
	}

	~Stack()
	{
		free(_a);
		_top = _capacity = 0;
	}
private:
	int* _a;
	int _top;
	int _capacity;
};

int main()
{
	A* ptr1 = new A;  // operator new + 1次构造
	A* ptr2 = new A[10]; // operator new[] + 10次构造

	delete ptr1; // 1次析构 + operator delete
	delete[] ptr2; // 10次析构 + operator delete[]

	Stack* pst = new Stack;
	delete pst;

	return 0;
}
  • delete是先析构再释放这块空间

  • 那么在使用自定义类型进行new的时候会在头部多开4个字节存放个数,这就是为什么在delete的时候要匹配着加[],还需要调用析构函数,这样就知道要释放多少了

在这里插入图片描述

  • 通过内存监视窗口再看一下

在这里插入图片描述

  • 如果不显示写这个析构函数,就也不会多开4个字节,编译器会自动生成一个,编译器觉得什么也不干,自动就会优化掉了,也就不会调用了

  • 而内置类型就不会多开,内置类型就不用调用析构函数

在这里插入图片描述

五、new和delete的实现原理

5.1 内置类型

  • 如果申请的是内置类型的空间,new和malloc,delete和free基本类似,不同的地方是:new/delete申请和释放的是单个元素的空间,new[]和delete[]申请的是连续空间,而且new在申请空间失败时会抛异常,malloc会返回NULL。

5.2 自定义类型

new的原理

  1. 调用operator new函数申请空间
  2. 在申请的空间上执行构造函数,完成对象的构造

delete的原理

  1. 在空间上执行析构函数,完成对象中资源的清理工作
  2. 调用operator delete函数释放对象的空间

new T[N]的原理

  1. 调用operator new[]函数,在operator new[]中实际调用operator new函数完成N个对象空间的申请
  2. 在申请的空间上执行N次构造函数

delete[]的原理

  1. 在释放的对象空间上执行N次析构函数,完成N个对象中资源的清理
  2. 调用operator delete[]释放空间,实际在operator delete[]中调用operator delete来释放空间

六、定位new表达式(placement-new)

  • 定位new表达式是在已分配的原始内存空间中调用构造函数初始化一个对象。

使用格式:

  • new (place_address) type或者new (place_address) type(initializer-list)
  • place_address必须是一个指针,initializer-list是类型的初始化列表

使用场景:

  • 定位new表达式在实际中一般是配合内存池使用。因为内存池分配出的内存没有初始化,所以如果是自定义类型的对象,需要使用new的定义表达式进行显示调构造函数进行初始化。
class A
{
public:
	A(int a = 0)
		: _a(a)
	{
		cout << "A():" << this << endl;
	}
	~A()
	{
		cout << "~A():" << this << endl;
	}
private:
	int _a;
};

// 定位new/replacement new
int main()
{
	// p1现在指向的只不过是与A对象相同大小的一段空间,还不能算是一个对象,因为构造函数没有执行
	A* p1 = (A*)malloc(sizeof(A));
	new(p1)A; // 注意:如果A类的构造函数有参数时,此处需要传参
	p1->~A();
	free(p1);
	A* p2 = (A*)operator new(sizeof(A));
	new(p2)A(10);
	p2->~A();
	operator delete(p2);
	return 0;
}

七、常见面试题

  • malloc/free和new/delete的区别

malloc/free和new/delete的共同点是:都是从堆上申请空间,并且需要用户手动释放。不同的地方是:

  1. malloc和free是函数,new和delete是操作符
  2. malloc申请的空间不会初始化,new可以初始化
  3. malloc申请空间时,需要手动计算空间大小并传递,new只需在其后跟上空间的类型即可,如果是多个对象,[]中指定对象个数即可
  4. malloc的返回值为void*, 在使用时必须强转,new不需要,因为new后跟的是空间的类型
  5. malloc申请空间失败时,返回的是NULL,因此使用时必须判空,new不需要,但是new需要捕获异常
  6. 申请自定义类型对象时,malloc/free只会开辟空间,不会调用构造函数与析构函数,而new在申请空间后会调用构造函数完成对象的初始化,delete在释放空间前会调用析构函数完成空间中资源的清理

7.1 内存泄漏

  • 什么是内存泄漏,内存泄漏的危害
  • 什么是内存泄漏:内存泄漏指因为疏忽或错误造成程序未能释放已经不再使用的内存的情况。内存泄漏并不是指内存在物理上的消失,而是应用程序分配某段内存后,因为设计错误,失去了对该段内存的控制,因而造成了内存的浪费。
  • 内存泄漏的危害:长期运行的程序出现内存泄漏,影响很大,如操作系统、后台服务等等,出现内存泄漏会导致响应越来越慢,最终卡死。
void MemoryLeaks()
{
	// 1.内存申请了忘记释放
	int* p1 = (int*)malloc(sizeof(int));
	int* p2 = new int;
	// 2.异常安全问题
	int* p3 = new int[10];
	Func(); // 这里Func函数抛异常导致 delete[] p3未执行,p3没被释放.
	delete[] p3;
}

7.2 内存泄漏分类

C/C++程序中一般我们关心两种方面的内存泄漏:

  • 堆内存泄漏(Heap leak)
    • 堆内存指的是程序执行中依据须要分配通过malloc / calloc / realloc / new等从堆中分配的一块内存,用完后必须通过调用相应的 free或者delete 删掉。假设程序的设计错误导致这部分内存没有被释放,那么以后这部分空间将无法再被使用,就会产生Heap Leak。
  • 系统资源泄漏
    • 指程序使用系统分配的资源,比方套接字、文件描述符、管道等没有使用对应的函数释放掉,导致系统资源的浪费,严重可导致系统效能减少,系统执行不稳定。

7.3 如何检测内存泄漏

  • 在vs下,可以使用windows操作系统提供的_CrtDumpMemoryLeaks() 函数进行简单检测,该函数只报出了大概泄漏了多少个字节,没有其他更准确的位置信息
int main()
{
	int* p = new int[10];
	// 将该函数放在main函数之后,每次程序退出的时候就会检测是否存在内存泄漏
	_CrtDumpMemoryLeaks();
	return 0;
}

// 程序退出后,在输出窗口中可以检测到泄漏了多少字节,但是没有具体的位置
Detected memory leaks!
Dumping objects ->
{79} normal block at 0x00EC5FB8, 40 bytes long.
Data: < > CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD
Object dump complete.
  • 因此写代码时一定要小心,尤其是动态内存操作时,一定要记着释放。但有些情况下总是防不胜防,简单的可以采用上述方式快速定位下。如果工程比较大,内存泄漏位置比较多,不太好查时一般都是借助第三方内存泄漏检测工具处理的。

7.4 如何避免内存泄漏

  1. 工程前期良好的设计规范,养成良好的编码规范,申请的内存空间记着匹配的去释放。ps:这个理想状态。但是如果碰上异常时,就算注意释放了,还是可能会出问题。需要下一条智能指针来管理才有保证。
  2. 采用RAII思想或者智能指针来管理资源。
  3. 有些公司内部规范使用内部实现的私有内存管理库。这套库自带内存泄漏检测的功能选项。
  4. 出问题了使用内存泄漏工具检测。ps:不过很多工具都不够靠谱,或者收费昂贵。

总结一下:

内存泄漏非常常见,解决方案分为两种:
1、事前预防型。如智能指针等。
2、事后查错型。如泄漏检测工具。

最后本文就到这里结束了,感谢大家的收看,请多多指点~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/406051.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Codeforces Round 494 (Div. 3)

目录 A. Polycarps Pockets B. Binary String Constructing C. Intense Heat D. Coins and Queries E. Tree Constructing F. Abbreviation A. Polycarps Pockets 记录数量可以直接开一个桶即可然后求最大值 void solve(){cin>>n;vector<int> ton(105);int …

Go 中如何高效遍历目录?探索几种方法

嗨&#xff0c;大家好&#xff01;我是波罗学。本文是系列文章 Go 技巧第十八篇&#xff0c;系列文章查看&#xff1a;Go 语言技巧。 目录遍历是一个很常见的操作&#xff0c;它的使用场景有如文件目录查看&#xff08;最典型的应用如 ls 命令&#xff09;、文件系统清理、日志…

FastJson反序列化漏洞(Fastjson1.2.47)

一、FastJson Fastjson 是一个阿里巴巴公司开源的 Java 语言编写的高性能功能完善的 JSON 库。可以将Java 对象转换为 JSON 格式(序列化)&#xff0c;当然它也可以将 JSON 字符串转换为 Java 对象&#xff08;反序列化&#xff09; 它采用一种“假定有序快速匹配”的算法&…

Sora-OpenAI 的 Text-to-Video 模型:制作逼真的 60s 视频片段

OpenAI 推出的人工智能功能曾经只存在于科幻小说中。 2022年&#xff0c;Openai 发布了 ChatGPT&#xff0c;展示了先进的语言模型如何实现自然对话。 随后&#xff0c;DALL-E 问世&#xff0c;它利用文字提示生成令人惊叹的合成图像。 现在&#xff0c;他们又推出了 Text-t…

Facebook的数字社交使命:连接世界的下一步

在数字化时代&#xff0c;社交媒体已成为人们生活的重要组成部分&#xff0c;而Facebook作为其中最具影响力的平台之一&#xff0c;一直以来都在努力履行着自己的使命——连接世界。然而&#xff0c;随着时代的变迁和技术的发展&#xff0c;Facebook正在不断探索着连接世界的下…

嵌入式按键处理驱动(easy_button)

简介 在嵌入式裸机开发中&#xff0c;经常有按键的管理需求&#xff0c;GitHub上已经有蛮多成熟的按键驱动了&#xff0c;但是由于这样那样的问题&#xff0c;最终还是自己实现了一套。本项目地址&#xff1a;bobwenstudy/easy_button (github.com)。 项目开发过程中参考了如…

【数据分享】中国首套1公里高分辨率大气湿度指数数据集(6个指标\免费获取)

湿度数据是气象学和许多其他领域中至关重要的数据&#xff0c;可用于气象预测与气候研究。之前我们分享过Excel格式和GIS矢量格式&#xff08;均可查看之前的文章获悉详情&#xff09;的2000-2020年全国各城市逐日、逐月和逐年的湿度数据。 本次我们给大家带来的是中国首套1公…

ElasticSearch 环境安装

ElasticSearch 安装 下载地址&#xff1a;https://www.elastic.co/downloads/past-releases#elasticsearch elasticsearch 使用的jdk说明&#xff1a; elasticsearch自带有jdk&#xff0c;如果需要使用自带的jdk则需要自定义环境变量ES_JAVA_HOME到es下的jdk目录 D:\fenbushi\e…

Linux之用户跟用户组

目录 一、简介 1.1、用户 1.2用户组 1.3UID和GID 1.4用户账户分类 二、用户 2.1、创建用户&#xff1a;useradd 2.2、删除用户&#xff1a;userdel 2.3 、修改用户 usermod 2.4、用户口令的管理:passwd 2.5、切换用户 三、用户组 3.1、增加一个用户组:groupadd 3.…

洛谷 【算法1-6】二分查找与二分答案

【算法1-6】二分查找与二分答案 - 题单 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 鄙人不才&#xff0c;刷洛谷&#xff0c;迎蓝桥&#xff0c;【算法1-6】二分查找与二分答案 已刷&#xff0c;现将 AC 代码献上&#xff0c;望有助于各位 P2249 【深基13.例1】查找 - 洛谷…

开发分销商城小程序助力您的业务快速增长

一、什么是分销商城小程序&#xff1f; 分销商城小程序是一种基于微信平台开发的小程序&#xff0c;可以帮助商家快速建立自己的分销体系&#xff0c;实现商品的快速销售。 二、分销商城小程序的优势&#xff1a; 低成本&#xff1a;开发成本低&#xff0c;无需投入大量资金…

架构设计:数据库扩展

引言 随着业务的发展和用户规模的增长&#xff0c;数据库往往会面临着存储容量不足、性能瓶颈等问题。为了解决这些问题&#xff0c;数据库扩展成为了一种常见的解决方案。在数据库扩展的实践中&#xff0c;有许多不同的策略和技术可供选择&#xff0c;其中包括水平拆分、垂直…

【干货】12个开源免费的程序员简历模板

前言 昨天有小伙伴在技术群里问有没有开源的程序员简历模板&#xff0c;其实很早之前在DotNetGuide中已经有整理过&#xff0c;只是一直没有写文章推广过&#xff0c;由此有了今天这篇文章&#xff0c;假如大家有更好的免费简历模板资源欢迎大家在文章评论区留言✌。 公众号回…

Jenkins使用遇到的一些问题

一&#xff1a;插件依赖报错 比如遇到一堆插件报错&#xff0c;不是提示版本对不上&#xff0c;就是启用不了 这样直接把Jenkins升级就行了&#xff0c;比如我这个是命令行启动的&#xff0c;直接把他替换就好了 如果是遇到插件依赖报错&#xff0c;比如A插件异常 则点击这个插…

冒泡排序改进方案

冒泡排序 BubbleSort 冒泡排序是一种比较简单的 稳定排序 算法&#xff0c;效率不高&#xff0c;因此实际当中用到的机会并不多。但 作为快速排序算法的基础&#xff0c;还是有必要了解一下。 顾名思义&#xff0c;冒泡就是指大的数字&#xff08;气泡&#xff09;会优先从底部…

Java毕业设计-基于jsp+servlet的图书管理系统-第66期

获取源码资料&#xff0c;请移步从戎源码网&#xff1a;从戎源码网_专业的计算机毕业设计网站 项目介绍 基于jspservlet的图书管理系统&#xff1a;前端jsp、jquery&#xff0c;后端 servlet、jdbc&#xff0c;集成图书管理、图书分类管理、图书借阅、图书归还、公告、读者等…

linux前端部署

安装jdk 配置环境变量 刷新配置文件 source profile source /etc/profile tomcat 解压文件 进去文件启动tomcat 开放tomcat的端口号 访问 curl localhsot:8080 改配置文件 改IP,改数据库名字&#xff0c;密码&#xff0c; 安装数据库 将war包拖进去 访问http:…

软件版本号解读(语义化SemVer、日历化CalVer及标识符)

1. 版本控制规范 1.1. 语义化版本&#xff08;SemVer&#xff09; 版本格式&#xff1a;主版本号.次版本号.修订号&#xff0c;版本号递增规则&#xff1a; 主版本号(MAJOR version)&#xff1a;添加了不兼容的 API 修改&#xff0c;次版本号(MINOR version)&#xff1a;添加…

多维时序 | Matlab实现CPO-BiTCN-BiGRU冠豪猪优化时间卷积神经网络双向门控循环单元多变量时间序列预测模型

多维时序 | Matlab实现CPO-BiTCN-BiGRU冠豪猪优化时间卷积神经网络双向门控循环单元多变量时间序列预测模型 目录 多维时序 | Matlab实现CPO-BiTCN-BiGRU冠豪猪优化时间卷积神经网络双向门控循环单元多变量时间序列预测模型预测效果基本介绍程序设计参考资料 预测效果 基本介绍…

XUbuntu22.04之解决:systemd-journald占用cpu过高问题(二百一十三)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 优质专栏&#xff1a;多媒…