多维时序 | Matlab实现CPO-BiTCN-BiGRU冠豪猪优化时间卷积神经网络双向门控循环单元多变量时间序列预测模型

多维时序 | Matlab实现CPO-BiTCN-BiGRU冠豪猪优化时间卷积神经网络双向门控循环单元多变量时间序列预测模型

目录

    • 多维时序 | Matlab实现CPO-BiTCN-BiGRU冠豪猪优化时间卷积神经网络双向门控循环单元多变量时间序列预测模型
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现CPO-BiTCN-BiGRU冠豪猪优化时间卷积神经网络双向门控循环单元多变量时间序列预测模型(完整源码和数据)
2.运行环境Matlab2023及以上,excel数据集,多列输入,单列输出,方便替换数据,考虑历史特征的影响;
3.多指标评价,评价指标包括:R2、MAE、MAPE、MSE等,代码质量极高。
冠豪猪算法CPO优化的BiTCN-BiGRU模型。通过优化学习率,BiGRU的神经元个数,滤波器个数,正则化参数四个参数提高其预测精度,减少人工调参。

CPO-BiTCN-BiGRU冠豪猪优化时间卷积神经网络双向门控循环单元多变量时间序列预测模型是一个结合了多种神经网络模型和优化算法的时间序列预测模型。让我逐步解释这个模型的不同组成部分:

CPO:CPO是一种优化算法,用于优化神经网络的参数。它可以通过调整网络参数来提高模型的性能。

BiTCN(Bidirectional Temporal Convolutional Network):BiTCN是一个双向的时间卷积神经网络模型。时间卷积神经网络可以有效地捕捉时间序列数据中的时序模式和趋势。双向表示模型可以同时考虑过去和未来的信息,进一步提高了预测性能。

BiGRU(Bidirectional Gated Recurrent Unit):BiGRU是一个双向门控循环单元模型。门控循环单元是一种循环神经网络模型,能够处理序列数据中的长期依赖关系。双向模型可以同时利用过去和未来的信息,提高预测准确性。

冠豪猪优化:冠豪猪优化是一种特定的优化算法,可能是作者自己定义的一种方法。它可能与传统的优化算法有所不同,但具体的细节需要参考原始论文或文献。

综合来看,CPO-BiTCN-BiGRU冠豪猪优化时间卷积神经网络双向门控循环单元多变量时间序列预测模型是一个综合了时间卷积神经网络、双向门控循环单元和特定优化算法的模型,用于处理多变量时间序列数据并进行预测。

程序设计

  • 完整程序和数据获取方式资源处私信回复Matlab实现CPO-BiTCN-BiGRU冠豪猪优化时间卷积神经网络双向门控循环单元多变量时间序列预测模型
clc;clear;close all;format compact
tic
clc
clear all

options = trainingOptions('adam', ...                 % 优化算法Adam
    'MaxEpochs', 70, ...                              % 最大训练次数
    'GradientThreshold', 1, ...                       % 梯度阈值
    'InitialLearnRate', 0.01, ...                     % 初始学习率
    'LearnRateSchedule', 'piecewise', ...             % 学习率调整
    'LearnRateDropPeriod', 60, ...                    % 训练850次后开始调整学习率
    'LearnRateDropFactor',0.2, ...                    % 学习率调整因子
    'L2Regularization', 0.01, ...                     % 正则化参数
    'ExecutionEnvironment', 'cpu',...                 % 训练环境
    'Verbose', 0, ...                                 % 关闭优化过程
    'Plots', 'training-progress');                    % 画出曲线


参考资料

[1] https://blog.csdn.net/kjm13182345320/category_11799242.html?spm=1001.2014.3001.5482
[2] https://blog.csdn.net/kjm13182345320/article/details/124571691

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/406022.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

XUbuntu22.04之解决:systemd-journald占用cpu过高问题(二百一十三)

简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 优质专栏:多媒…

具有准电阻负载阻抗的带宽增强型 Doherty 功率放大器(2023.05 MTT)--从理论到ADS版图

具有准电阻负载阻抗的带宽增强型 Doherty 功率放大器(2023.05 MTT)–从理论到ADS版图 原文: Bandwidth-Enhanced Doherty Power Amplifier With Optimized Quasi-Resistive Power-Combing Load Impedance 发表于APRIL 2023,在微波顶刊IEEE T MTT上面,使…

第十四章[面向对象]:14.9:定制类

一,__len__()方法返回长度 1,len()函数 len()函数: 功能:len() 函数返回对象(字符、列表、元组等)长度或项目个数 语法: len( s ) 参数:s : 要查询长度的对象 返回值: 返回对象长度 2,没有定义__len__()方法时,对实例应用len()函数会引发TypeError class Student: …

【Spring】声明式事务 spring-tx

文章目录 声明式事务是什么?一、Spring事务管理器二、基于注解的声明式事务1.1 准备工作1.2 基本事务控制1.3 事务属性:只读1.4 事务属性:超时时间1.5 事务属性:事务异常1.6 事务属性:事务隔离级别1.7 事务属性&#x…

xff注入 [CISCN2019 华东南赛区]Web111

打开题目 看见smarty 想到模板注入 又看见ip 想到xff注入 一般情况下输入{$smarty.version}就可以看到返回的smarty的版本号。该题目的Smarty版本是3.1.30 在Smarty3的官方手册里有以下描述: Smarty已经废弃{php}标签,强烈建议不要使用。在Smarty 3.1&#xff…

springsecurity+vue前后端分离适配cas认证的跨域问题

0. cas服务搭建参考:CAS 5.3服务器搭建_cas-overlay-CSDN博客 1. 参照springsecurity适配cas的方式, 一直失败, 无奈关闭springssecurity认证 2. 后端服务适配cas: 参考前后端分离项目(springbootvue)接入单点登录cas_前后端分离做cas单点登录-CSDN博客 1) 引入maven依赖 …

css实现悬浮卡片

结果展示 html代码 <!doctype html> <html lang"zh"> <head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content"IEedge,chrome1"> <meta name"viewport" content"…

MATLAB中的稀疏矩阵和密集矩阵

在MATLAB中&#xff0c;矩阵可以表示为密集或稀疏格式。通常&#xff0c;矩阵默认以密集格式存储&#xff0c;这意味着每个元素都明确地存储在内存中&#xff0c;无论它的值是多少。然而&#xff0c;当矩阵含有大量的零元素时&#xff0c;这种存储方式就会变得非常低效。为了更…

【深度学习目标检测】十八、基于深度学习的人脸检测系统-含GUI和源码(python,yolov8)

人脸检测是计算机视觉中的一个重要方向&#xff0c;也是一个和人们生活息息相关的研究方向&#xff0c;因为人脸是人最重要的外貌特征。人脸检测技术的重要性主要体现在以下几个方面&#xff1a; 人脸识别与安全&#xff1a;人脸检测是人脸识别系统的一个关键部分&#xff0c;是…

【QT QML】软件打包,生成安装包

一、版本 Desktop 5.15.2 MinGW 64-bit二、打包 1. 编译Release版本 2. 在工程目录下找到Realse文件夹 3. 拷贝文件 ***-Desktop_Qt_5_15_2_MinGW_64_bit-Release - release - xxx.exe到一个新文件夹中 4. 开启相应打包工具&#xff08;根据自己的编译器和版本选择&#xff0…

PPT大珩助手使用方法的详细介绍

软件介绍 PPT大珩助手是一款全新设计的Office PPT插件&#xff0c;它是一款功能强大且实用的PPT辅助工具&#xff0c;支持Wps Word和Office Word&#xff0c;能够轻松帮助您修改、优化和管理幻灯片。凭借丰富的功能和用户友好的界面&#xff0c;PPT大珩助手能够助力您打造出精…

【力扣hot100】刷题笔记Day11

前言 科研不顺啊......又不想搞了&#xff0c;随便弄弄吧&#xff0c;多花点时间刷题&#xff0c;今天开启二叉树&#xff01; 94. 二叉树的中序遍历 - 力扣&#xff08;LeetCode&#xff09; 递归 # 最简单递归 class Solution:def inorderTraversal(self, root: TreeNode) …

ChatGPT/GPT4科研应用与AI绘图及论文写作

2023年随着OpenAI开发者大会的召开&#xff0c;最重磅更新当属GPTs&#xff0c;多模态API&#xff0c;未来自定义专属的GPT。微软创始人比尔盖茨称ChatGPT的出现有着重大历史意义&#xff0c;不亚于互联网和个人电脑的问世。360创始人周鸿祎认为未来各行各业如果不能搭上这班车…

第十一天-Excel的操作

目录 1.xlrd-Excel的读模块 安装 使用 获取工作簿 读取工作簿的内容 xlsxwriter-Excel的写模块 安装 使用 生成图表 add_series参数 图表的样式 demo&#xff1a;生成图表 Excel的操作在python中有多个模块&#xff0c;为了能够快速使用&#xff0c;选择了相对简单…

MATLAB使用绘图plot制作动态GIF

文章目录 1 前言2 DemoDemo 1 - 不使用函数Demo 2 - 使用函数 1 前言 在PPT展示或者博客创作中&#xff0c;有时需要插入动态图如GIF&#xff0c;来演示算法效果或者结果。在MATLAB中&#xff0c;可以通过一些代码&#xff0c;将绘图plot转化为动态的GIF。 其大致方法为&…

C++中的STL数据结构

内容来自&#xff1a;代码随想录&#xff1a;哈希表理论基础 1.常见的三种哈希结构 当我们想使用哈希法来解决问题的时候&#xff0c;我们一般会选择如下三种数据结构 数组 set &#xff08;集合&#xff09; map(映射) 在C中&#xff0c;set 和 map 分别提供以下三种数据结构…

vue3的diff

以vue3的patch为例 首先判断两个节点是否为相同同类节点&#xff0c;不同则删除重新创建如果双方都是文本则更新文本内容如果双方都是元素节点则递归更新子元素&#xff0c;同时更新元素属性更新子节点时又分了几种情况 新的子节点是文本&#xff0c;老的子节点是数组则清空&a…

07 STL 简介

目录 什么是STLSTL的版本STL的六大组件STL的重要性如何学习STLSTL的缺陷 1. 什么是STL c标准库的重要组成部分&#xff0c;不仅是一个可复用的组件库&#xff0c;而且是一个包罗数据结构和算法的软件框架 2. STL的版本 原始版本 Alexander Stepanov、Meng Lee在惠普实验室的…

详解AP3216C(三合一sensor: 光照、距离、照射强度)驱动开发

目录 概述 1 认识AP3216C 1.1 AP3216C特性 1.2 AP3216C内部结构 1.3 AP3216C 硬件电路 1.4 AP3216C工作时序 1.4.1 I2C 写数据协议 1.4.2 I2C 读数据协议 1.5 重要的寄存器 1.5.1 系统配置寄存器 1.5.2 和中断相关寄存器 1.5.3 IR数据寄存器 1.5.4 ALS 数据寄存器 …

Android 开发一个耳返程序(录音,实时播放)

本文目录 点击直达 Android 开发一个耳返程序程序编写1. 配置 AndroidManifast.xml2.编写耳返管理器3. 录音权限申请4. 使用注意 最后我还有一句话要说怕相思&#xff0c;已相思&#xff0c;轮到相思没处辞&#xff0c;眉间露一丝 Android 开发一个耳返程序 耳返程序是声音录入…