【Python】OpenCV-图像轮廓检测初学

图像轮廓检测初学

在图像处理领域中,轮廓检测是一项重要的任务,用于寻找并标定图像中的物体边缘。本文将介绍如何使用OpenCV库进行图像轮廓检测,并展示一个简单的示例代码。代码中的注释将详细解释每一步的操作。

1. 引言

图像轮廓检测是图像处理中的一项关键技术,可用于检测物体的形状、边界等信息。在本文中,我们将演示如何使用OpenCV进行图像轮廓检测,并通过示例代码展示这一过程。

2. 代码示例

以下是一个使用OpenCV的示例代码,演示了图像轮廓检测的过程:

import cv2
import numpy as np

# 读取图像
src_img = cv2.imread("demo.png") # 例如简单的5个英文验证码图片

# 将图像转换为灰度
img = cv2.cvtColor(src_img, cv2.COLOR_BGR2GRAY)

# 阈值化处理,生成二值图像
thresh, img = cv2.threshold(img, 190, 255, cv2.THRESH_BINARY)  # 白底黑字
print("阈值1:", thresh)

thresh, img = cv2.threshold(img, 190, 255, cv2.THRESH_BINARY_INV)  # 黑底白字
print("阈值2:", thresh)

thresh, img = cv2.threshold(img, 1, 255, cv2.THRESH_OTSU)  # 自动寻找阈值
print("自动阈值:", thresh)

# 膨胀操作,填充小的空洞(去掉周围的点点)
kernel = np.ones([5, 5])
img = cv2.dilate(img, kernel)

# 腐蚀操作,消除噪声(把有用的英文扩大)
kernel = np.ones([7, 7])
img = cv2.erode(img, kernel)

# 寻找图像轮廓
contours, _ = cv2.findContours(img, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

# 计算轮廓面积
areas = []
for c in contours:
    area = cv2.contourArea(c)
    areas.append(area)
areas = np.array(areas)
print("轮廓面积:", areas)

# 获取面积最大的5个轮廓
index = np.argsort(areas)[-6:-1] # 不是[-5:],因为最大的面积是边框 
print("前5个轮廓的索引:", index)

# 提取前5个轮廓
top5_contours = []
for i in range(5):
    top5_contours.append(contours[index[i]])

# 在原图上绘制矩形框
for c in top5_contours:
    # 获取矩形框坐标
    x, y, w, h = cv2.boundingRect(c)
    # 绘制矩形框
    cv2.rectangle(src_img, [x, y, x + w, y + h], [0, 0, 255], 2)

# 显示结果图像
cv2.imshow("demo", src_img)
cv2.waitKey(0)
  • 原图
    在这里插入图片描述
  • 识别并画框
    在这里插入图片描述

3. 代码解释

3.1 图像预处理

首先,读取图像并将其转换为灰度图像。接着,通过阈值化处理得到二值图像,其中包括白底黑字和黑底白字两种处理方式。

3.2 形态学操作

通过膨胀(dilate)和腐蚀(erode)操作,对图像进行形态学处理,以填充小的空洞并消除噪声。

3.3 轮廓检测

使用OpenCV的findContours函数寻找图像中的轮廓,并计算每个轮廓的面积。

3.4 提取前5个轮廓

通过面积排序,提取前5个面积最大的轮廓。

3.5 绘制矩形框

在原图上绘制包围每个轮廓的矩形框,以突显检测到的物体。

4. 结论

通过上述代码示例,我们演示了如何使用OpenCV进行图像轮廓检测,并通过一系列预处理操作找到并突显图像中的主要物体。轮廓检测在计算机视觉和图像处理中有着广泛的应用,可用于目标检测、图像分割等任务。详细的注释帮助理解代码的每一步操作,为初学者提供了一个学习的起点。

代码参考源自:Shady的混乱空间

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/405982.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

决策树算法

目录 谷歌笔记本(可选) 决策树 决策树的一般流程 信息增益 划分数据集 递归构建决策树 使用Matplotlib注解绘制树形图 Matplotlib注解 构造注解树 测试和存储分类器 测试算法:使用决策树执行分类 使用算法:决策树的存…

RISC-V知识总结 —— 指令集

资源1: RISC-V China – RISC-V International 资源2: RISC-V International – RISC-V: The Open Standard RISC Instruction Set Architecture 资源3: RV32I, RV64I Instructions — riscv-isa-pages documentation 1. 指令集架构的类型 在讨论RISC-V或任何处理器架构时&…

基于springboot+vue的图书进销存管理系统(前后端分离)

博主主页:猫头鹰源码 博主简介:Java领域优质创作者、CSDN博客专家、阿里云专家博主、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战,欢迎高校老师\讲师\同行交流合作 ​主要内容:毕业设计(Javaweb项目|小程序|Pyt…

【Vue3】学习computed计算属性

💗💗💗欢迎来到我的博客,你将找到有关如何使用技术解决问题的文章,也会找到某个技术的学习路线。无论你是何种职业,我都希望我的博客对你有所帮助。最后不要忘记订阅我的博客以获取最新文章,也欢…

华清远见嵌入式学习——驱动开发——day9

目录 作业要求: 作业答案: 代码效果: ​编辑 Platform总线驱动代码: 应用程序代码: 设备树配置: 作业要求: 通过platform总线驱动框架编写LED灯的驱动,编写应用程序测试&…

JAVA代码审计之XSS漏洞

Part1 漏洞案例demo&#xff1a; 没有java代码审计XSS漏洞拿赏金的案例。 所以将就看看demo吧 漏洞原理&#xff1a;关于XSS漏洞的漏洞原理核心其实没啥好说的&#xff0c;网上一查一大堆 反射性XSS漏洞 <% page language"java" contentType"text/html; c…

C# OpenCvSharp 利用白平衡技术进行图像修复

目录 效果 灰度世界(GrayworldWB)-白平衡算法 完美反射(SimpleWB)-白平衡算法 基于学习的(LearningBasedWB)-白平衡算法 代码 下载 C# OpenCvSharp 利用白平衡技术进行图像修复 OpenCV xphoto模块中提供了三种不同的白平衡算法&#xff0c;分别是&#xff1a;灰度世界(G…

bat脚本进程停止与启动

在Windows操作系统中&#xff0c;批处理&#xff08;Batch&#xff09;脚本是一种常见的自动化脚本工具&#xff0c;通过BAT文件来执行一系列DOS命令。通过BAT脚本&#xff0c;我们可以轻松地控制进程的启动和停止。 一、进程停止 在BAT脚本中&#xff0c;要停止一个进程&…

基于Redis限流(固定窗口、滑动窗口、漏桶、令牌桶)(肝货!!!)

近期redis复习的比较多&#xff0c;在限流这方面发现好像之前理解的限流算法有问题&#xff0c;索性花了一天“带薪摸鱼”时间肝了一天&#xff0c;有问题可以评论区探讨。 废话不多说&#xff0c;正片开始 目录 Maven固定窗口滑动窗口算法漏桶算法令牌桶算法 Maven 有些不用的…

B树的介绍

R-B Tree 简介特性B树特性m阶B树的性质&#xff08;这些性质是B树规定的&#xff09; B树的搜索B树的添加B树的删除——非叶子结点 简介 R-B Tree又称为Red-Black Tree&#xff0c;红黑树。是一种特殊的二叉查找树&#xff0c;红黑树的每个节点上都有存储为表示结点的颜色&…

3-Bean的生命周期

Bean的生命周期 创建对象和初始化是在AbstractAutowireCapableBeanFactory.doCreateBean()中完成的 创建对象 实例化&#xff08;构造方法&#xff09;依赖注入 初始化 执行Aware接口回调执行BeanPostProcessor.postProcessBeforeInitialization执行InitializingBean回调&…

ShardingSphere 5.x 系列【15】分布式主键生成器

有道无术,术尚可求,有术无道,止于术。 本系列Spring Boot 版本 3.1.0 本系列ShardingSphere 版本 5.4.0 源码地址:https://gitee.com/pearl-organization/study-sharding-sphere-demo 文章目录 1. 概述2. 配置3. 内置算法3.1 UUID3.2 Snowflake3.3 NanoId3.4 CosId3.5 Co…

PostgreSQL教程(四):高级特性

一、简介 在之前的章节里我们已经涉及了使用SQL在PostgreSQL中存储和访问数据的基础知识。现在我们将要讨论SQL中一些更高级的特性&#xff0c;这些特性有助于简化管理和防止数据丢失或损坏。最后&#xff0c;我们还将介绍一些PostgreSQL扩展。 本章有时将引用教程&#xff0…

Rust之构建命令行程序(四):用TDD(测试-驱动-开发)模式来开发库的功能

开发环境 Windows 11Rust 1.75.0 VS Code 1.86.2 项目工程 这次创建了新的工程minigrep. 用测试-驱动模式来开发库的功能 既然我们已经将逻辑提取到src/lib.rs中&#xff0c;并将参数收集和错误处理留在src/main.rs中&#xff0c;那么为代码的核心功能编写测试就容易多了。我…

Opencv实战(2)绘图与图像操作

Opencv实战(2)绘图与图像操作 指路前文&#xff1a;Opencv实战(1)读取与像素操作 三、基本绘图 文章目录 Opencv实战(2)绘图与图像操作三、基本绘图(1).line(2).rectangle(3).circle 四、图像处理(1).颜色空间1.意义2.cvtColor()3.inRange()4.适应光线 (2).形态操作1.腐蚀2.膨…

【软件架构】01-架构的概述

1、定义 软件架构就是软件的顶层结构 RUP&#xff08;统一过程开发&#xff09;4 1 视图 1&#xff09;逻辑视图&#xff1a; 描述系统的功能、组件和它们之间的关系。它主要关注系统的静态结构&#xff0c;包括类、接口、包、模块等&#xff0c;并用于表示系统的组织结构…

unity hub (第一部)初学配置

1、安装Unity Hub 2、设置中文 3、安装编辑器 4、新建项目 5、新建完成后进入编辑器 6、 编辑器设置中文 editPreferencesLanguages选择中文

mysql的日志文件在哪?

阅读本文之前请参阅----MySQL 数据库安装教程详解&#xff08;linux系统和windows系统&#xff09; MySQL的日志文件通常包括错误日志、查询日志、慢查询日志和二进制日志等。这些日志文件的位置取决于MySQL的安装和配置。以下是一些常见的日志文件位置和如何找到它们&#xff…

Android Studio基础(下载安装与简单使用)

1、搭建Android开发平台 1.1 Android Studio 下载地址及版本说明 Android 开发者官网&#xff1a; https://developer.android.com/index.html&#xff08;全球&#xff0c;需科学上网&#xff09; https://developer.android.google.cn/index.html&#xff08;国内&#xff…

【Flink精讲】Flink任务调度机制

Graph 的概念 Flink 中的执行图可以分成四层&#xff1a; StreamGraph -> JobGraph -> ExecutionGraph -> 物理执 行图。 StreamGraph&#xff1a;是根据用户通过 Stream API 编写的代码生成的最初的图。用来表示程序的拓扑结构。JobGraph&#xff1a; StreamGraph …