Unity中URP实现水效果(水的深度)

文章目录

  • 前言
  • 一、搭建预备场景
    • 1、新建一个面片,使其倾斜一个角度,来模拟水底和岸边的效果
    • 2、随便创建几个物体,作为与水面接触的物体
    • 3、再新建一个面片,作为水面
  • 二、开始编写水体的Shader效果
    • 1、新建一个URP基础Shader
    • 2、把水体Shader分解为以下几个部分
  • 三、实现水的深度效果
    • 1、在URP管线设置下,打开深度图
    • 2、在SubShader中,申明深度图纹理和采样器
    • 3、修改水体渲染为半透明队列
    • 4、在Pass中关闭深度写入
    • 5、获取水体顶点在观察空间下的坐标
    • 6、把采样到的深度图转化到观察空间下
    • 7、最后,用观察空间下的 深度图 和 水体顶点坐标的Z值相加即可
  • 四、最终代码 及 效果
    • 1、最终效果
    • 2、最终代码


前言

在之后的文章中,我们在URP下实现水面的效果。
在该文章中,我们来看一下水的深度是怎么实现的。


一、搭建预备场景

1、新建一个面片,使其倾斜一个角度,来模拟水底和岸边的效果

在这里插入图片描述

2、随便创建几个物体,作为与水面接触的物体

在这里插入图片描述

3、再新建一个面片,作为水面

在这里插入图片描述


二、开始编写水体的Shader效果

1、新建一个URP基础Shader

//水的深度
Shader "MyShader/URP/P4_7_2"
{
    Properties {}
    SubShader
    {
        Tags
        {
            //告诉引擎,该Shader只用于 URP 渲染管线
            "RenderPipeline"="UniversalPipeline"
            //渲染类型
            "RenderType"="Opaque"
            //渲染队列
            "Queue"="Geometry"
        }
        Pass
        {
            Name "Universal Forward"
            Tags
            {
                // LightMode: <None>
            }

            Cull Back
            Blend One Zero
            ZTest LEqual
            ZWrite On
          
            HLSLPROGRAM
            #pragma vertex vert
            #pragma fragment frag
            // Pragmas
            #pragma target 2.0
            
            // Includes
            #include "Packages/com.unity.render-pipelines.core/ShaderLibrary/Color.hlsl"
            #include "Packages/com.unity.render-pipelines.universal/ShaderLibrary/Input.hlsl"

            //struct appdata
            //顶点着色器的输入
            struct Attributes
            {
                float3 positionOS : POSITION;
            };
            //struct v2f
            //片元着色器的输入
            struct Varyings
            {
                float4 positionCS : SV_POSITION;
            };
            //v2f vert(Attributes v)
            //顶点着色器
            Varyings vert(Attributes v)
            {
                Varyings o = (Varyings)0;
                float3 positionWS = TransformObjectToWorld(v.positionOS);
                o.positionCS = TransformWorldToHClip(positionWS);
                return o;
            }
            //fixed4 frag(v2f i) : SV_TARGET
            //片元着色器
            half4 frag(Varyings i) : SV_TARGET
            {
                //水的深度
                
                //水的高光

                //水的反射

                //水的焦散

                //水下的扭曲
                half4 c;
                c.rgb = 0.5;
                c.a = 1;
                return c;
            }
            ENDHLSL
        }
    }

    FallBack "Hidden/Shader Graph/FallbackError"
}

2、把水体Shader分解为以下几个部分

  • 水的深度
  • 水的高光
  • 水的反射
  • 水的焦散
  • 水下的扭曲
  • 水面泡沫

三、实现水的深度效果

这个可以利用深度图,仿照之前能量罩交接处高光的效果来做

  • Unity中URP下实现能量罩(交接处高亮)

1、在URP管线设置下,打开深度图

在这里插入图片描述

2、在SubShader中,申明深度图纹理和采样器

//申明深度图的 纹理 和 采样器
TEXTURE2D(_CameraDepthTexture);SAMPLER(sampler_CameraDepthTexture);

3、修改水体渲染为半透明队列

Tags
{
//告诉引擎,该Shader只用于 URP 渲染管线
“RenderPipeline”=“UniversalPipeline”
//渲染类型
“RenderType”=“Transparent”
//渲染队列
“Queue”=“Transparent”
}

4、在Pass中关闭深度写入

ZWrite Off

5、获取水体顶点在观察空间下的坐标

  • 在Varyings结构体,定义positionVS变量,用于存储顶点在观察空间下的坐标

struct Varyings
{
float4 positionCS : SV_POSITION;
float2 uv : TEXCOORD0;
float3 positionVS : TEXCOORD1;
};

  • 在顶点着色器中,对把顶点转化到观察空间下

o.positionVS = TransformWorldToView(positionWS);

6、把采样到的深度图转化到观察空间下

float depthScene = LinearEyeDepth(depthTex,_ZBufferParams);

7、最后,用观察空间下的 深度图 和 水体顶点坐标的Z值相加即可

float4 depthWater = depthhScene + i.positionVS.z;


四、最终代码 及 效果

1、最终效果

在这里插入图片描述

2、最终代码

//水的深度
Shader "MyShader/URP/P4_8_2"
{
    Properties {}
    
    SubShader
    {
        Tags
        {
            //告诉引擎,该Shader只用于 URP 渲染管线
            "RenderPipeline"="UniversalPipeline"
            //渲染类型
            "RenderType"="Transparent"
            //渲染队列
            "Queue"="Transparent"
        }
        //Blend One One
        ZWrite Off
        Pass
        {
            Name "Unlit"
          
            HLSLPROGRAM
            #pragma vertex vert
            #pragma fragment frag
            // Pragmas
            #pragma target 2.0
            
            // Includes
            #include "Packages/com.unity.render-pipelines.core/ShaderLibrary/Color.hlsl"
            #include "Packages/com.unity.render-pipelines.universal/ShaderLibrary/Core.hlsl"
            #include "Packages/com.unity.render-pipelines.universal/ShaderLibrary/Input.hlsl"

            CBUFFER_START(UnityPerMaterial)
            
            CBUFFER_END

            
            TEXTURE2D(_CameraDepthTexture);SAMPLER(sampler_CameraDepthTexture);
            //struct appdata
            //顶点着色器的输入
            struct Attributes
            {
                float3 positionOS : POSITION;
                float2 uv : TEXCOORD0;
            };
            //struct v2f
            //片元着色器的输入
            struct Varyings
            {
                float4 positionCS : SV_POSITION;
                float2 uv : TEXCOORD0;
                float4 screenPos : TEXCOORD1;
                float3 positionVS : TEXCOORD2;
            };
            //v2f vert(Attributes v)
            //顶点着色器
            Varyings vert(Attributes v)
            {
                Varyings o = (Varyings)0;
                float3 positionWS = TransformObjectToWorld(v.positionOS);
                o.positionVS = TransformWorldToView(positionWS);
                o.positionCS = TransformWViewToHClip(o.positionVS);
                
                o.screenPos = ComputeScreenPos(o.positionCS);
                return o;
            }
            //fixed4 frag(v2f i) : SV_TARGET
            //片元着色器
            half4 frag(Varyings i) : SV_TARGET
            {
                //1、水的深度
                //获取屏幕空间下的 UV 坐标
                float2 screenUV = i.positionCS.xy / _ScreenParams.xy;
                half depthTex = SAMPLE_TEXTURE2D(_CameraDepthTexture,sampler_CameraDepthTexture,screenUV).x;
                //深度图转化到观察空间下
                float depthScene = LinearEyeDepth(depthTex,_ZBufferParams);
                float4 depthWater = depthScene + i.positionVS.z;
                
                //获取水面模型顶点在观察空间下的Z值(可以在顶点着色器中,对其直接进行转化得到顶点观察空间下的坐标)
                
                //2、水的高光

                //3、水的反射

                //4、水的焦散

                //5、水下的扭曲

                //6、水面泡沫
                return depthWater;
            }
            ENDHLSL
        }
    }
    FallBack "Hidden/Shader Graph/FallbackError"
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/405918.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

redis GEO 类型原理及命令详解

目录 前言 一、GeoHash 的编码方法 二、Redis 操作GEO类型 前言 我们有一个需求是用户搜索附近的店铺&#xff0c;就是所谓的位置信息服务&#xff08;Location-Based Service&#xff0c;LBS&#xff09;的应用。这样的相关服务我们每天都在接触&#xff0c;用滴滴打车&am…

2.23通过platform总线驱动框架编写LED灯的驱动,编写应用程序测试

驱动代码 #include <linux/init.h> #include <linux/module.h> #include <linux/of_gpio.h> #include <linux/gpio.h> #include <linux/platform_device.h> #include <linux/mod_devicetable.h>#define LED_ON _IOW(l, 1, int) #define L…

nginx的功能以及运用(编译、平滑升级、提高服务器设置、location alias 等)

nginx与apache的对比 nginx优点 nginx中INPUT OUTPUT模型 零拷贝技术 原理&#xff1a;减少内核空间和用户空间的拷贝次数&#xff0c;增加INPUT OUTPUT的效率 网络I/O 模型 同步&#xff0c;异步 &#xff1a; 消息反馈机制 阻塞和非阻塞 阻塞型I/O模型&#xff1a;不利于…

第3.3章:StarRocks数据导入——Stream Load

一、概述 Stream Load是StarRocks最为核心的导入方式&#xff0c;用户通过发送HTTP请求将本地文件或数据流导入至StarRocks中&#xff0c;其本身不依赖其他组件。 Stream Load支持csv和json两种数据文件格式&#xff0c;适用于数据文件数量较少且单个文件的大小不超过10GB 的场…

[yolov9]使用python部署yolov9的onnx模型

【框架地址】 https://github.com/WongKinYiu/yolov9 【yolov9简介】 在目标检测领域&#xff0c;YOLOv9 实现了一代更比一代强&#xff0c;利用新架构和方法让传统卷积在参数利用率方面胜过了深度卷积。 继 2023 年 1 月 正式发布一年多以后&#xff0c;YOLOv9 终于来了&a…

基于Java SSM框架实现高校失物招领管理平台系统项目【项目源码】

基于java的SSM框架实现高校失物招领管理平台系统演示 B/S结构 在B/S的结构中&#xff0c;学生可以在任何可以上网的地方访问和使用系统网站的功能&#xff0c;没有地域和时间等方面的限制&#xff0c;B/S结构是把程序完整放置到计算机网络的服务器上&#xff0c;通过计算机互联…

module ‘json‘ has no attribute ‘dumps‘

如果在使用Python的json模块时遇到AttributeError: module json has no attribute dumps错误&#xff0c;通常是因为在Python环境中json模块不支持dumps方法。这种情况可能是因为Python的json模块被重命名或修改过导致的。 解决方法可以尝试以下几种&#xff1a; 1.检查Pytho…

SpringBoot:自定义starter

点击查看&#xff1a;LearnSpringBoot08starter 点击查看&#xff1a;LearnSpringBoot08starterTest 点击查看更多的SpringBoot教程 一、主要流程 1. 先创建空的project 2. 打开空的project 结构 图选中model 点击 3. 创建 model&#xff08;Maven&#xff09;启动器 提…

【C语言】内存操作,内存函数篇---memcpy,memmove,memset和memcmp内存函数的使用和模拟实现【图文详解】

欢迎来CILMY23的博客喔&#xff0c;本篇为​【C语言】内存操作&#xff0c;内存函数篇---memcpy&#xff0c;memmove&#xff0c;memset和memcmp内存函数的使用和模拟实现【图文详解】&#xff0c;图文讲解四种内存函数&#xff0c;带大家更深刻理解C语言中内存函数的操作&…

Jmeter基础(3) 发起一次请求

目录 Jmeter 一次请求添加线程组添加HTTP请求添加监听器 Jmeter 一次请求 用Jmeter进行一次请求的过程&#xff0c;需要几个步骤呢&#xff1f; 1、添加线程组2、添加HTTP请求3、添加监听器&#xff0c;查看结果树 现在就打开jmeter看下如何创建一个请求吧 添加线程组 用来…

自定义股票池策略周报告---收益1.8,回撤0.7,提供实盘设置

综合交易模型已经交易了1个月了目前收益10&#xff0c;回测0.8&#xff0c;策略追求稳稳的幸福&#xff0c;细水流长&#xff0c;回测年化20&#xff0c;最大回撤8 链接自定义股票池策略周报告---收益1.8&#xff0c;回撤0.7&#xff0c;提供实盘设置 (qq.com) 实盘稳定运行2…

ctx.drawImage的canvas绘图不清晰解决方案,以及canvas高清导出

ctx.drawImage的canvas绘图不清晰 原因&#xff1a; 查资料是这么说的&#xff1a;canvas 绘图时&#xff0c;会从两个物理像素的中间位置开始绘制并向两边扩散 0.5 个物理像素。当设备像素比为 1 时&#xff0c;一个 1px 的线条实际上占据了两个物理像素&#xff08;每个像素…

Redis篇之Redis持久化的实现

持久化即把数据保存到可以永久保存的存储设备当中&#xff08;磁盘&#xff09;。因为Redis是基于内存存储数据的&#xff0c;一旦redis实例当即数据将会全部丢失&#xff0c;所以需要有某些机制将内存中的数据持久化到磁盘以备发生宕机时能够进行恢复&#xff0c;这一过程就称…

如何将建筑白模叠加到三维地球上?

​ 通过以下方法可以将建筑白模叠加到三维地球上。 方法/步骤 下载三维地图浏览器 http://www.geosaas.com/download/map3dbrowser.exe&#xff0c;安装完成后桌面上出现”三维地图浏览器“图标。 2、双击桌面图标打开”三维地图浏览器“ 3、点击“建筑白模”菜单&…

Ubuntu20.04开启/禁用ipv6

文章目录 Ubuntu20.04开启/禁用ipv61.ipv62. 开启ipv6step1. 编辑sysctl.confstep2. 编辑网络接口配置文件 3. 禁用ipv6&#xff08;sysctl&#xff09;4. 禁用ipv6&#xff08;grub&#xff09;附&#xff1a;总结linux网络配置 Ubuntu20.04开启/禁用ipv6 1.ipv6 IP 是互联网…

面试经典150题 -- 二叉树 (总结)

总的地址 : 面试经典 150 题 - 学习计划 - 力扣&#xff08;LeetCode&#xff09;全球极客挚爱的技术成长平台 104 . 二叉树的最大深度 104 . 二叉树的最大深度 递归 : 直接用递归访问 &#xff0c; 访问左孩子 和 右孩子 &#xff0c; 如果 存在 &#xff0c; 深度就1 &…

利用R语言进行典型相关分析实战

&#x1f349;CSDN小墨&晓末:https://blog.csdn.net/jd1813346972 个人介绍: 研一&#xff5c;统计学&#xff5c;干货分享          擅长Python、Matlab、R等主流编程软件          累计十余项国家级比赛奖项&#xff0c;参与研究经费10w、40w级横向 文…

幻兽帕鲁(Palworld 1.4.1)私有服务器搭建(docker版)

文章目录 说明客户端安装服务器部署1Panel安装和配置docker服务初始化设置设置开机自启动设置镜像加速 游戏服务端部署游戏服务端参数可视化配置 Palworld连接服务器问题总结 说明 服务器硬件要求&#xff1a;Linux系统/Window系统&#xff08;x86架构&#xff0c;armbian架构…

Linux设备模型(二) - kset/kobj/ktype APIs

一&#xff0c;kobject_init_and_add 1&#xff0c;kobject_init_and_add实现 /** * kobject_init_and_add() - Initialize a kobject structure and add it to * the kobject hierarchy. * kobj: pointer to the kobject to initialize * ktype: p…

Spring注入

文章目录 3.1 什么是注入3.1.1 为什么需要注入3.1.2 如何进行注入3.1.3 注入好处 3.2 Spring 注入的原理分析&#xff08;简易版&#xff09;3.3 Set 注入详解3.3.1 JDK内置类型3.3.2 自定义类型3.3.2.1 第一种方式3.3.2.2 第二种方式 3.4 构造注入3.4.1 步骤3.4.2 构造方法重载…