Linux线程同步(2)死锁与互斥锁

死锁(Deadlock)是指两个或两个以上的进程(或线程)在执行过程中,由于竞争资源或者由于彼此通信而造成的一种阻塞的现象,若无外力作用,它们都将无法推进下去。此时称系统处于死锁状态或系统产生了死锁,这些永远在互相等待的进程(或线程)称为死锁进程(或线程)。

死锁的产生需要满足四个必要条件,这四个条件被称为死锁的四个必要条件(Coffman条件),它们是:

  1. 互斥条件:一个资源每次只能被一个进程使用。
  2. 请求与保持条件:一个进程因请求资源而阻塞时,对已获得的资源保持不放。
  3. 不剥夺条件:进程已获得的资源,在未使用完之前,不能强行剥夺。
  4. 循环等待条件:系统中若干进程形成一种头尾相接的循环等待资源关系。

如果上述四个条件同时成立,系统就可能发生死锁。

操作系统层面的死锁最早在1965年由Dijkstra在研究银行家算法时提出,它是计算机操作系统乃至整个并发程序设计领域最难处理的问题之一。死锁的恢复和预防是操作系统的重要设计目标之一,常见的死锁预防和恢复策略包括鸵鸟算法(系统假装没有死锁发生)和死锁检测和恢复(系统并不试图阻止死锁的产生,而是允许死锁发生,当检测到死锁发生后,采取措施进行恢复)。

1.线程死锁

本节基于线程去讲解死锁。

有时,一个线程需要同时访问两个或更多不同的共享资源,而每个资源又都由不同的互斥量管理。当超过一个线程加锁同一组互斥量时,就有可能发生死锁。

两个或两个以上的进程在执行过程中,因争夺共享资源而造成的一种互相等待的现象若无外力作用,它们都将无法推进下去。此时称系统处于死锁状态或系统产生了死锁

死锁的几种场景:(1)忘记释放锁;(2)重复加锁;(3)多线程多锁,抢占锁资源

(2)连续两次(或多次)调用 pthread_mutex_lock 来锁定同一个互斥量(mutex)而没有相应的 pthread_mutex_unlock 调用会导致死锁(deadlock)。这是因为互斥量的设计初衷是确保同一时间只有一个线程可以访问被保护的资源或代码段。

当你第一次调用 pthread_mutex_lock(&mutex); 时,如果互斥量 mutex 已经被其他线程锁定,当前线程将会阻塞,直到互斥量被解锁。如果当前线程已经拥有了这个互斥量(即它之前已经成功锁定了这个互斥量但还没有解锁),那么再次调用 pthread_mutex_lock(&mutex); 会导致线程阻塞,因为它在等待自己释放互斥量,这是一个逻辑错误。

测试代码:

#include <stdio.h>
#include <pthread.h>
#include <unistd.h>

// 创建2个互斥量
pthread_mutex_t mutex1, mutex2;

void * workA(void * arg) {

    pthread_mutex_lock(&mutex1);
    sleep(1);
    pthread_mutex_lock(&mutex2);

    printf("workA....\n");

    pthread_mutex_unlock(&mutex2);
    pthread_mutex_unlock(&mutex1);
    return NULL;
}


void * workB(void * arg) {
    pthread_mutex_lock(&mutex2);
    sleep(1);
    pthread_mutex_lock(&mutex1);

    printf("workB....\n");

    pthread_mutex_unlock(&mutex1);
    pthread_mutex_unlock(&mutex2);

    return NULL;
}

int main() {

    // 初始化互斥量
    pthread_mutex_init(&mutex1, NULL);
    pthread_mutex_init(&mutex2, NULL);

    // 创建2个子线程
    pthread_t tid1, tid2;
    pthread_create(&tid1, NULL, workA, NULL);
    pthread_create(&tid2, NULL, workB, NULL);

    // 回收子线程资源
    pthread_join(tid1, NULL);
    pthread_join(tid2, NULL);

    // 释放互斥量资源
    pthread_mutex_destroy(&mutex1);
    pthread_mutex_destroy(&mutex2);

    return 0;
}

上述代码,最终执行不会输出任何东西。

首先,workA对1加锁,然后睡眠1秒。这个时候可能轮到B执行了,B先对2进行加锁,然后睡眠1秒。此时A醒了,尝试对2进行加锁,而2已经被B加锁了,因此A阻塞。轮到B的时候,对1进行加锁,然后1已经被A加上了,所以B阻塞等待。所有,发生了死锁。

2.读写锁

当有一个线程已经持有互斥锁时,互斥锁将所有试图进入临界区的线程都阻塞住。但是考虑一种情形,当前持有互斥锁的线程只是要读访问共享资源,而同时有其它几个线程也想读取这个共享资源,但是由于互斥锁的排它性,所有其它线程都无法获取锁,也就无法读访问共享资源了,但是实际上多个线程同时读访问共享资源并不会导致问题
在对数据的读写操作中,更多的是读操作,写操作较少,例如对数据库数据的读写应用。
为了满足当前能够允许多个读出但只允许一个写入的需求,线程提供了读写锁来实现。


◼ 读写锁的特点:
 如果有其它线程读数据,则允许其它线程执行读操作,但不允许写操作。
 如果有其它线程写数据,则其它线程都不允许读、写操作。
 写是独占的,写的优先级高。

如果A线程加的是读锁,然后B线程是要加写锁,C线程是要加读锁。那么由于写的优先级高,因此B先加写锁。

测试代码:

/*
    读写锁的类型 pthread_rwlock_t
    int pthread_rwlock_init(pthread_rwlock_t *restrict rwlock, const pthread_rwlockattr_t *restrict attr);
    int pthread_rwlock_destroy(pthread_rwlock_t *rwlock);
    int pthread_rwlock_rdlock(pthread_rwlock_t *rwlock);
    int pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlock);
    int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock);
    int pthread_rwlock_trywrlock(pthread_rwlock_t *rwlock);
    int pthread_rwlock_unlock(pthread_rwlock_t *rwlock);

    案例:8个线程操作同一个全局变量。
    3个线程不定时写这个全局变量,5个线程不定时的读这个全局变量
*/

#include <stdio.h>
#include <pthread.h>
#include <unistd.h>

// 创建一个共享数据,作为全局变量
int num = 1;

// pthread_mutex_t mutex;互斥锁的效率相比于读写锁要慢
//创建读写锁
pthread_rwlock_t rwlock;

void * writeNum(void * arg) {

    while(1) {
        pthread_rwlock_wrlock(&rwlock);
        num++;
        printf("++write, tid : %ld, num : %d\n", pthread_self(), num);
        pthread_rwlock_unlock(&rwlock);
        usleep(100);
    }

    return NULL;
}

void * readNum(void * arg) {

    while(1) {
        pthread_rwlock_rdlock(&rwlock);
        printf("===read, tid : %ld, num : %d\n", pthread_self(), num);
        pthread_rwlock_unlock(&rwlock);
        usleep(100);
    }

    return NULL;
}

int main() {

   pthread_rwlock_init(&rwlock, NULL);

    // 创建3个写线程,5个读线程
    pthread_t wtids[3], rtids[5];
    for(int i = 0; i < 3; i++) {
        pthread_create(&wtids[i], NULL, writeNum, NULL);
    }

    for(int i = 0; i < 5; i++) {
        pthread_create(&rtids[i], NULL, readNum, NULL);
    }

    // 设置线程分离
    for(int i = 0; i < 3; i++) {
       pthread_detach(wtids[i]);
    }

    for(int i = 0; i < 5; i++) {
         pthread_detach(rtids[i]);
    }

    pthread_exit(NULL);

    pthread_rwlock_destroy(&rwlock);

    return 0;
}

最后三行代码的原因是:如果destory在先,因为上面的detach运行后子线程可能没有运行完,所以可能会在子线程运行过程中destory互斥量,这样会出错,如果destory在后,那么主线程exit后也不会去destory互斥量,所以我建议上面回收子线程使用join,因为join是阻塞的,会等所有的子进程资源回收完了再继续,然后再destory互斥量,最后exit主线程。

也就是说:用pthread_join,最后,最初主线程pthread_exit(NULL)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/405678.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【Linux进阶之路】Socket —— “UDP“ “TCP“

文章目录 一、再识网络1. 端口号2. 网络字节序列3.TCP 与 UDP 二、套接字1.sockaddr结构2.UDP1.server端1.1 构造函数1.2 Init1.3 Run 2.客户端1.Linux2.Windows 3.TCP1. 基本接口2. 客户端3. 服务端1.版本12.版本23.版本34.版本4 三、守护进程尾序 一、再识网络 1. 端口号 在…

RT-Thread 时钟 timer delay 相关

前言 此处,介绍对delay 时钟 timer 这几部分之间的关联和相关的知识点;本来只是想介绍一下 delay的,但是发现说到delay 不先 提到 先验知识 晶振\时钟\时钟节拍\定时器 好像没法解释透彻,所以就变成了 晶振\时钟\时钟节拍\定时器\delay 的很简单的概括一遍;并附带上能直接运行的…

【数据结构】链式队列

链式队列实现&#xff1a; 1.创建一个空队列 2.尾插法入队 3.头删法出队 4.遍历队列 一、main函数 #include <stdio.h> #include "./3.linkqueue.h" int main(int…

备考2025年AMC8数学竞赛:2000-2024年AMC8真题练一练

我们今天来随机看五道AMC8的真题和解析&#xff0c;对于想了解或者加AMC8美国数学竞赛的孩子来说&#xff0c;吃透AMC8历年真题是备考最科学、最有效的方法之一。 为帮助孩子们更高效地备考&#xff0c;我整理了2000-2004年的全部AMC8真题&#xff0c;并且独家制作了多种在线练…

Rust通用代码生成器莲花发布红莲尝鲜版二十一发布介绍视频,前端代码生成物大翻新

Rust通用代码生成器莲花发布红莲尝鲜版二十一发布介绍视频&#xff0c;前端代码生成物大翻新 Rust通用代码生成器发布了红莲尝鲜版二十一的最新介绍视频&#xff0c;前端代码生成物大翻新。视频请见&#xff1a; Rust通用代码生成器&#xff1a;莲花&#xff0c;红莲尝鲜版二…

构建生物医学知识图谱from zero to hero (3):生物医学命名实体识别和链接

生物医学实体链接 🤓现在是激动人心的部分。对于NLP和命名实体识别和链接的新手,让我们从一些基础知识开始。命名实体识别技术用于检测文本中的相关实体或概念。例如,在生物医学领域,我们希望在文本中识别各种基因、药物、疾病和其他概念。 生物医学概念提取 在这个例子中…

爬虫知识--03

数据存mysql import requests from bs4 import BeautifulSoup import pymysql# 链接数据库pymysql conn pymysql.connect(userroot,password"JIAJIA",host127.0.0.1,databasecnblogs,port3306, ) cursor conn.cursor() cursor conn.cursor()# 爬数据 res request…

Linux之ACL访问控制列表

一、ACL权限的介绍 1.1 什么是ACL 访问控制列表&#xff08;ACL&#xff09;是一种网络安全技术&#xff0c;它通过在网络设备&#xff08;如路由器、交换机和防火墙&#xff09;上定义一系列规则&#xff0c;对进出接口的数据包进行控制。这些规则可以包含“允许”&…

计算机网络面经_体系结构一文说清

编辑&#xff1a;平平无奇的羊 目录 基础 1. 计算机网络结构体系 三种模型之间的区别&#xff1a; 如何背诵&#xff1a; 进阶 OSI七层模型&#xff1a; TCP/IP四层模型&#xff1a; TCP/IP五层模型 总结 字节实习生为大家带来的是计算机网络面经系列博文&#xff0c;由浅…

线性代数:向量、张量、矩阵和标量

线性代数&#xff1a;向量、张量、矩阵和标量 背景 在线性代数中&#xff0c;向量、张量、矩阵和标量都属于基础概念&#xff0c;特别是最近AI的爆火&#xff0c;向量和张量的概念也越来越普及&#xff0c;本文将介绍下这些基本概念。 1. 标量&#xff08;Scalar&#xff0…

【Java网络编程06】HTTPS原理

1. HTTPS基本概念 HTTPS&#xff1a;HTTPS也是一个应用层协议&#xff0c;它在HTTP协议的基础上引入了一个加密层——SSL协议&#xff0c;区别就在于HTTP协议是基于明文传输的&#xff08;不安全&#xff09;&#xff0c;使用HTTPS加密就能在一定程度上防止数据在传输过程中被…

c# 类的介绍及延伸

类介绍 类的定义是以关键字 class 开始&#xff0c;后跟类的名称。 类属于引用类型&#xff0c;只能通过new方式创建。 如果类定义中没有指定基类&#xff0c;那其基类为system.object // <访问修饰符> class class类名 <access specifier> class class_name { //…

华为配置WDS手拉手业务示例

配置WDS手拉手业务示例 组网图形 图1 配置WDS手拉手业务示例组网图 业务需求组网需求数据规划配置思路配置注意事项操作步骤配置文件 业务需求 企业用户通过WLAN接入网络&#xff0c;以满足移动办公的最基本需求。但企业考虑到AP通过有线部署的成本较高&#xff0c;所以通过建立…

golang 监听ip数据包(golang纯享版)

golang 监听ip数据包(golang纯享版) 【注】本机编译运行平台为linux&#xff0c;如需测试代码请移至linux平台进行代码测试 本文以ip4 作为案例进行包抓取示范&#xff0c;ip6抓取与ip4方式异曲同工&#xff0c;可自行举一反三得出 第一步&#xff0c;通过wireshark抓包拿到…

第四十二回 假李逵翦径劫单身 黑旋风沂岭杀四虎-python读写csv和json数据

李逵答应了宋江三件事&#xff1a;不可吃酒&#xff0c;独自前行&#xff0c;不带板斧。李逵痛快答应了&#xff0c;挎一口腰刀&#xff0c;提着朴刀&#xff0c;带了一锭大银子&#xff0c;三五个小银子就下山去了。 宋江放心不下&#xff0c;于是请同乡朱贵也回家一趟&#…

spring boot3登录开发-3(账密登录逻辑实现)

⛰️个人主页: 蒾酒 &#x1f525;系列专栏&#xff1a;《spring boot实战》 &#x1f30a;山高路远&#xff0c;行路漫漫&#xff0c;终有归途。 目录 前置条件 内容简介 用户登录逻辑实现 创建交互对象 1.创建用户登录DTO 2.创建用户登录VO 创建自定义登录业务异…

Vue模板引用之ref特殊属性

1. 使用实例 <template><input ref"input" name"我是input的name" /><br /><ul><li v-for"arr in array" :key"arr" id"111" ref"itemRefs">{{arr}}</li></ul> </…

windows11本地深度学习环境搭建Anacond,keras,tensorflow,pytorch, jupyter notebook

前言 工欲善其事&#xff0c;必先利其器。 第一步 安装Anaconda 下载地址&#xff1a; https://www.anaconda.com/download 路径默认 这里都勾选上 然后会卡在这里&#xff0c;卡很久&#xff0c;不用管&#xff0c;等着就行 第二步 配置环境 conda env list 列出所有…

css复习

盒模型相关&#xff1a; border&#xff1a;1px solid red (没有顺序) 单元格的border会发生重叠&#xff0c;如果不想要重叠设置 border-collapse:collapse (表示相邻边框合并在一起) padding padding影响盒子大小的好处使用 margin应用&#xff1a; 行内或行内块元素水…

XFF伪造 [MRCTF2020]PYWebsite1

打开题目 直接查看源码 看到一个./flag.php 访问一下 购买者的ip已经被记录&#xff0c;本地可以看到flag&#xff0c;那么使用xff或者client-ip伪造一下ip试试 bp抓包 加一个X-Forwarded-For头 得到flag