基于深度学习的高精度线路板瑕疵目标检测系统(PyTorch+Pyside6+YOLOv5模型)

摘要:基于深度学习的高精度线路板瑕疵目标检测系统可用于日常生活中来检测与定位线路板瑕疵目标,利用深度学习算法可实现图片、视频、摄像头等方式的线路板瑕疵目标检测识别,另外支持结果可视化与图片或视频检测结果的导出。本系统采用YOLOv5目标检测模型训练数据集,使用Pysdie6库来搭建页面展示系统,同时支持ONNX、PT等模型作为权重模型的输出。本系统支持的功能包括线训练模型的导入、初始化;置信分与IOU阈值的调节、图像上传、检测、可视化结果展示、结果导出与结束检测;视频的上传、检测、可视化结果展示、结果导出与结束检测;摄像头的上传、检测、可视化结果展示与结束检测;已检测目标列表、位置信息;前向推理用时。另外本线路板瑕疵目标检测识别系统同时支持原始图像与检测结果图像的同时展示,原始视频与检测结果视频的同时展示。本博文提供了完整的Python代码和使用教程,适合新入门的朋友参考,完整代码资源文件请转至文末的下载链接。
在这里插入图片描述

基本介绍

近年来,机器学习和深度学习取得了较大的发展,深度学习方法在检测精度和速度方面与传统方法相比表现出更良好的性能。YOLOv5是单阶段目标检测算法YOLO的第五代,根据实验得出结论,其在速度与准确性能方面都有了明显提升,开源的代码可见https://github.com/ultralytics/yolov5。因此本博文利用YOLOv5检测算法实现一种高精度线路板瑕疵目标检测模型,再搭配上Pyside6库写出界面系统,完成目标检测识别页面的开发。注意到YOLO系列算法的最新进展已有YOLOv6、YOLOv7、YOLOv8等算法,将本系统中检测算法替换为最新算法的代码也将在后面发布,欢迎关注收藏。

环境搭建

(1)下载完整文件到自己电脑上,然后使用cmd打开到文件目录
(2)利用Conda创建环境(Anacodna),conda create -n yolo5 python=3.8 然后安装torch和torchvision(pip install torch1.10.0+cu113 torchvision0.11.0+cu113 -f https://download.pytorch.org/whl/torch_stable.html -i https://pypi.tuna.tsinghua.edu.cn/simple)其中-i https://pypi.tuna.tsinghua.edu.cn/simple代表使用清华源,这行命令要求nvidia-smi显示的CUDA版本>=11.3,最后安装剩余依赖包使用:pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
在这里插入图片描述
在这里插入图片描述

(3)安装Pyside6库 pip install pyside6==6.3 -i https://pypi.tuna.tsinghua.edu.cn/simple
在这里插入图片描述

(4)对于windows系统下的pycocotools库的安装:pip install pycocotools-windows -i https://pypi.tuna.tsinghua.edu.cn/simple

界面及功能展示

下面给出本博文设计的软件界面,整体界面简洁大方,大体功能包括训练模型的导入、初始化;置信分与IOU阈值的调节、图像上传、检测、可视化结果展示、结果导出与结束检测;视频的上传、检测、可视化结果展示、结果导出与结束检测;已检测目标列表、位置信息;前向推理用时。希望大家可以喜欢,初始界面如下图:
在这里插入图片描述

模型选择与初始化

用户可以点击模型权重选择按钮上传训练好的模型权重,训练权重格式可为.pt、.onnx以及。engine等,之后再点击模型权重初始化按钮可实现已选择模型初始化信息的设置。
在这里插入图片描述
在这里插入图片描述

置信分与IOU的改变

在Confidence或IOU下方的输入框中改变值即可同步改变滑动条的进度,同时改变滑动条的进度值也可同步改变输入框的值;Confidence或IOU值的改变将同步到模型里的配置,将改变检测置信度阈值与IOU阈值。

图像选择、检测与导出

用户可以点击选择图像按钮上传单张图片进行检测与识别。
在这里插入图片描述

再点击图像检测按钮可完成输入图像的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

再点击检测结果展示按钮可在系统左下方显示输入图像检测的结果,系统将显示识别出图片中的目标的类别、位置和置信度信息。
在这里插入图片描述

点击图像检测结果导出按钮即可导出检测后的图像,在保存栏里输入保存的图片名称及后缀即可实现检测结果图像的保存。
在这里插入图片描述

点击结束图像检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频。

视频选择、检测与导出

用户可以点击选择视频按钮上传视频进行检测与识别,之后系统会将视频的第一帧输入到系统界面的左上方显示。
在这里插入图片描述

再点击视频检测按钮可完成输入视频的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

点击暂停视频检测按钮即可实现输入视频的暂停,此时按钮变为继续视频检测,输入视频帧与帧检测结果会保留在系统界面,可点击下拉目标框选择已检测目标的坐标位置信息,再点击继续视频检测按钮即可实现输入视频的检测。
点击视频检测结果导出按钮即可导出检测后的视频,在保存栏里输入保存的图片名称及后缀即可实现检测结果视频的保存。
在这里插入图片描述

点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频。

摄像头打开、检测与结束

用户可以点击打开摄像头按钮来打开摄像头设备进行检测与识别,之后系统会将摄像头图像输入到系统界面的左上方显示。
在这里插入图片描述

再点击摄像头检测按钮可完成输入摄像头的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频或打开摄像按钮来上传图像、视频或打开摄像头。

算法原理介绍

本系统采用了基于深度学习的单阶段目标检测算法YOLOv5,相比于YOLOv3和YOLOv4,YOLOv5在检测精度和速度上都有很大的提升。YOLOv5算法的核心思想是将目标检测问题转化为一个回归问题,通过直接预测物体中心点的坐标来代替Anchor框。此外,YOLOv5使用SPP(Spatial Pyramid Pooling)的特征提取方法,这种方法可以在不增加计算量的情况下,有效地提取多尺度特征,提高检测性能。YOLOv5s模型的整体结构如下图所示。

在这里插入图片描述

YOLOv5网络结构是由Input、Backbone、Neck、Prediction组成。YOLOv5的Input部分是网络的输入端,采用Mosaic数据增强方式,对输入数据随机裁剪,然后进行拼接。Backbone是YOLOv5提取特征的网络部分,特征提取能力直接影响整个网络性能。在特征提取阶段,YOLOv5使用CSPNet(Cross Stage Partial Network)结构,它将输入特征图分为两部分,一部分通过一系列卷积层进行处理,另一部分直接进行下采样,最后将这两部分特征图进行融合。这种设计使得网络具有更强的非线性表达能力,可以更好地处理目标检测任务中的复杂背景和多样化物体。在Neck阶段使用连续的卷积核C3结构块融合特征图。在Prediction阶段,模型使用结果特征图预测目标的中心坐标与尺寸信息。博主觉得YOLOv5不失为一种目标检测的高性能解决方案,能够以较高的准确率对目标进行分类与定位。当然现在YOLOv6、YOLOv7、YOLOv8等算法也在不断提出和改进,后续博主也会将这些算法融入到本系统中,敬请期待。

数据集介绍

本系统使用的线路板瑕疵目标数据集手动标注了missing_hole、mouse_bite、open_circuit、short、spur、spurious_copper这六个类别,数据集总计693张图片。该数据集中类别都有大量的旋转和不同的光照条件,有助于训练出更加鲁棒的检测模型。本文实验的线路板瑕疵目标检测识别数据集包含训练集569张图片,验证集124张图片,选取部分数据部分样本数据集如下图所示。由于YOLOv5算法对输入图片大小有限制,需要将所有图片调整为相同的大小。为了在不影响检测精度的情况下尽可能减小图片的失真,我们将所有图片调整为640x640的大小,并保持原有的宽高比例。此外,为了增强模型的泛化能力和鲁棒性,我们还使用了数据增强技术,包括随机旋转、缩放、裁剪和颜色变换等,以扩充数据集并减少过拟合风险。
在这里插入图片描述

关键代码解析

本系统的深度学习模型使用PyTorch实现,基于YOLOv5算法进行目标检测。在训练阶段,我们使用了预训练模型作为初始模型进行训练,然后通过多次迭代优化网络参数,以达到更好的检测性能。在训练过程中,我们采用了学习率衰减和数据增强等技术,以增强模型的泛化能力和鲁棒性。
在测试阶段,我们使用了训练好的模型来对新的图片和视频进行检测。通过设置阈值,将置信度低于阈值的检测框过滤掉,最终得到检测结果。同时,我们还可以将检测结果保存为图片或视频格式,以便进行后续分析和应用。本系统基于YOLOv5算法,使用PyTorch实现。代码中用到的主要库包括PyTorch、NumPy、OpenCV、PyQt等。
在这里插入图片描述
在这里插入图片描述

Pyside6界面设计

Pyside6是Python语言的GUI编程解决方案之一,可以快速地为Python程序创建GUI应用。在本博文中,我们使用Pyside6库创建一个图形化界面,为用户提供简单易用的交互界面,实现用户选择图片、视频进行目标检测。
我们使用Qt Designer设计图形界面,然后使用Pyside6将设计好的UI文件转换为Python代码。图形界面中包含多个UI控件,例如:标签、按钮、文本框、多选框等。通过Pyside6中的信号槽机制,可以使得UI控件与程序逻辑代码相互连接。

实验结果与分析

在实验结果与分析部分,我们使用精度和召回率等指标来评估模型的性能,还通过损失曲线和PR曲线来分析训练过程。在训练阶段,我们使用了前面介绍的线路板瑕疵目标数据集进行训练,使用了YOLOv5算法对数据集训练,总计训练了300个epochs。在训练过程中,我们使用tensorboard记录了模型在训练集和验证集上的损失曲线。从下图可以看出,随着训练次数的增加,模型的训练损失和验证损失都逐渐降低,说明模型不断地学习到更加精准的特征。在训练结束后,我们使用模型在数据集的验证集上进行了评估,得到了以下结果。
在这里插入图片描述

下图展示了我们训练的YOLOv5模型在验证集上的PR曲线,从图中可以看出,模型取得了较高的召回率和精确率,整体表现良好。
在这里插入图片描述

下图展示了本博文在使用YOLOv5模型对线路板瑕疵目标数据集进行训练时候的Mosaic数据增强图像。
在这里插入图片描述
在这里插入图片描述

综上,本博文训练得到的YOLOv5模型在数据集上表现良好,具有较高的检测精度和鲁棒性,可以在实际场景中应用。另外本博主对整个系统进行了详细测试,最终开发出一版流畅的高精度目标检测系统界面,就是本博文演示部分的展示,完整的UI界面、测试图片视频、代码文件等均已打包上传,感兴趣的朋友可以关注我私信获取。

其他基于深度学习的目标检测系统如西红柿、猫狗、山羊、野生目标、烟头、二维码、头盔、交警、野生动物、野外烟雾、人体摔倒识别、红外行人、家禽猪、苹果、推土机、蜜蜂、打电话、鸽子、足球、奶牛、人脸口罩、安全背心、烟雾检测系统等有需要的朋友关注我,从博主其他视频中获取下载链接。

完整项目目录如下所示:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/40535.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

计算机网络 day6 arp病毒 - ICMP协议 - ping命令 - Linux手工配置IP地址

目录 arp协议 arp病毒\欺骗 arp病毒的运行原理 arp病毒产生的后果: 解决方法: ICMP协议 ICMP用在哪里? ICMP协议数据的封装过程 ​编辑 为什么icmp协议封装好数据后,还要加一个ip包头,再使用ip协议再次进…

Docker 基础知识解析:容器与传统虚拟化对比:资源利用、启动时间、隔离性和部署效率

🌷🍁 博主 libin9iOak带您 Go to New World.✨🍁 🦄 个人主页——libin9iOak的博客🎐 🐳 《面试题大全》 文章图文并茂🦕生动形象🦖简单易学!欢迎大家来踩踩~&#x1f33…

国赛线下开赛!全国智能车百度智慧交通创意组区域赛今日正式拉开帷幕!

“全国大学生智能汽车竞赛”是教育部倡导的大学生科技A类竞赛,中国高等教育学会将其列为含金量最高的大学生竞赛之一,为《全国普通高校大学生竞赛排行榜》榜单内赛事。飞桨共承办了百度完全模型组和百度智慧交通组两大赛道。全国大学生智能汽车竞赛百度智…

SpringBoot(七)Filter的使用

思考一个问题,服务端对于客户端的请求,真的应该照单全收吗?不是的。比如拿我们之前实现的用户注册功能来看,如果用户的昵称带了一些不友好的字母或汉字,你是给他过滤掉呢还是让他注册呢?毫无疑问&#xff0…

HTTP 请求走私漏洞(HTTP Request Smuggling)

一、什么是Http 请求走私漏洞? HTTP请求走私漏洞(HTTP Request Smuggling)是一种安全漏洞,利用了HTTP协议中请求和响应的解析和处理方式的不一致性。攻击者通过构造特定的恶意请求,以欺骗服务器和代理服务器&#xff0…

五、DQL-2.基本查询

一、数据准备 1、删除表employee: drop table employee; 2、创建表emp: 3、添加数据: 4、查看表数据: 【代码】 -- 查询数据--------------------------------------------------------- drop table emp;-- 数据准备-----------…

Ubuntu 的安装及其设置

文章目录 安装 Ubuntu屏幕分辨率设置修改软件源服务器锁屏时间设置设置 dash跨系统拖拽复制文件的设置 安装 Ubuntu 首先安装 VMware 虚拟机,虚拟机的安装比较简单,一步步点击Next即可完成安装。 安装完成后启动虚拟机,点击创建新的虚拟机。…

个人博客系统(二)

该博客系统共有八个页面,即注册页面、登录页面、添加文章页面、修改文章页面、我的博客列表页面、主页、查看文章详情页面、个人中心页面。 1 注册页面 该页面如图所示: 首先,要先判断注册的用户名、密码、确认密码以及验证码是否为空,若有一个为空,点击提交,则会提醒 …

“探索图像处理的奥秘:使用Python和OpenCV进行图像和视频处理“

1、上传图片移除背景后下载。在线抠图软件_图片去除背景 | remove.bg – remove.bg 2、对下载的图片放大2倍。ClipDrop - Image upscaler 3、对放大后的下载照片进行编辑。 4、使用deepfacelive进行换脸。 1)将第三步的照片复制到指定文件夹。C:\myApp\deepfakeliv…

MFC第十六天 CFileDialog、CEdit简介、(线程)进程的启动,以及Notepad的开发(托盘技术-->菜单功能)

文章目录 CCommonDialogCFileDialogCEdit托盘技术进程的启动附录1:启动线程方式附录2:MFC对话框的退出过程 CCommonDialog 通用对话框 CCommonDialog 这些对话框类封装 Windows 公共对话框。 它们提供了易于使用的复杂对话框实现。 CFileDialog 提供用于打开或保存文件的标准对…

【前端】自制密码展示隐藏按钮

效果 一、前期准备 使用的图片是iconfront上拿的svg代码环境是Vue2 Element 二、创建组件 showPasswordAndclose <template><span class"show-password-container"><span v-if"chooseType CLOSE" click"changeType"><…

手机图片怎么转pdf格式?这几个图片转换方式了解一下

手机图片怎么转pdf格式&#xff1f;将图片转换为PDF的应用场景非常广泛。例如&#xff0c;你可以将多张照片转换为PDF&#xff0c;然后将其作为一本电子相册保存。你也可以将多张图片转换为PDF&#xff0c;然后将其作为一份报告或文档的附件发送给他人。此外&#xff0c;许多人…

数据结构双向链表,实现增删改查

一、双向链表的描述 在单链表中&#xff0c;查找直接后继结点的执行时间为O(1)&#xff0c;而查找直接前驱的执行时间为O(n)。为克服单链表这种单向性的缺点&#xff0c;可以用双向链表。 在双向链表的结点中有两个指针域&#xff0c;一个指向直接后继&#xff0c;另一个指向直…

Python应用实例(二)数据可视化(二)

数据可视化&#xff08;二&#xff09; 1.随机漫步1.1 创建RandomWalk类1.2 选择方向1.3 绘制随机漫步图1.4 模拟多次随机漫步1.5 设置随机漫步图的样式 1.随机漫步 使用Python来生成随机漫步数据&#xff0c;再使用Matplotlib以引人瞩目的方式将这些数据呈现出来。随机漫步是…

vscode远程连接提示:过程试图写入的管道不存在(删除C:\Users\<用户名>\.ssh\known_hosts然后重新连接)

文章目录 复现过程原因解决方法总结 复现过程 我是在windows上用vscode远程连接到我的ubuntu虚拟机上&#xff0c;后来我的虚拟机出了点问题&#xff0c;我把它回退了&#xff0c;然后再连接就出现了这个问题 原因 本地的known_hosts文件记录服务器信息与现服务器的信息冲突了…

reggie优化06-项目部署

1、部署架构 2、部署环境 3、部署前端 4、部署后端 修改图片位置&#xff0c;并push至仓库

【System Verilog and UVM基础入门17】Using get_next_item()

从小父亲就教育我&#xff0c;做一个对社会有用的人&#xff01; 关于握手协议的文章&#xff0c;网上有很多很多&#xff0c;这篇文章是最原滋原味的介绍&#xff0c;希望可以帮助到有缘人&#xff01; uvm_driver #(REQ,RSP) The base class for drivers that initiate req…

k8s如何访问 pod 元数据

如何访问 pod 元数据 **我们在 pod 中运行容器的时候&#xff0c;是否也会有想要获取当前 pod 的环境信息呢&#xff1f;**咱们写的 yaml 清单写的很简单&#xff0c;实际上部署之后&#xff0c; k8s 会给我们补充在 yaml 清单中没有写的字段&#xff0c;那么我们的 pod 环境信…

Python:基于matplotlib与mayavi的3D可视化(点云+等值面)

文章目录 一、3D可视化常用方法二、三维图像在numpy、cv2、以及tifffile.imread中通道的区别三、项目实战 1、基于matplotlib的3D可视化&#xff08;体素体&#xff09; 2、基于mayavi的3D可视化2.0、mayavi使用指南&#xff08;鼠标&#xff09;2.1、mlab.points3d()参数详解…

青岛大学_王卓老师【数据结构与算法】Week05_10_顺序栈的操作3_学习笔记

本文是个人学习笔记&#xff0c;素材来自青岛大学王卓老师的教学视频。 一方面用于学习记录与分享&#xff0c; 另一方面是想让更多的人看到这么好的《数据结构与算法》的学习视频。 如有侵权&#xff0c;请留言作删文处理。 课程视频链接&#xff1a; 数据结构与算法基础…