【MATLAB源码-第143期】基于matlab的蝴蝶优化算法(BOA)机器人栅格路径规划,输出做短路径图和适应度曲线。

操作环境:

MATLAB 2022a

1、算法描述

蝴蝶优化算法(Butterfly Optimization Algorithm, BOA)是基于蝴蝶觅食行为的一种新颖的群体智能算法。它通过模拟蝴蝶个体在寻找食物过程中的嗅觉导向行为以及随机飞行行为,来探索解空间,寻找最优解。这一算法不仅在理论上具有创新性,而且在多种复杂优化问题上展现了良好的性能。接下来,我们将详细介绍蝴蝶优化算法的背景、核心概念、算法流程以及应用领域。

背景介绍

自然界中,蝴蝶通过其复杂的行为模式在广阔的自然环境中寻找食物。特别是,蝴蝶依靠其敏锐的嗅觉来探测远处花朵的气味,并通过一系列优化的飞行路径达到目的地。这一自然现象激发了研究者们的灵感,促使他们开发出了模仿蝴蝶觅食行为的蝴蝶优化算法。

核心概念详细解读

气味浓度与感知距离

在BOA中,"气味浓度"是一个关键概念,它代表了解的质量,即目标函数的值。蝴蝶通过感知气味浓度的变化来判断食物的位置,类似地,算法中的"蝴蝶"(即解)根据气味浓度的高低来评估其当前位置的优劣,并据此调整自己的位置。"感知距离"决定了蝴蝶能够感知到的最远气味源的距离,这在算法中用于调整搜索的范围,平衡全局搜索与局部搜索的比例。

摆动行为与气味强度

蝴蝶的摆动行为是其寻找食物时表现出的随机性行为,它有助于蝴蝶在局部区域内进行彻底搜索,以防止错过任何可能的食物源。BOA通过引入随机摆动行为来模拟这一过程,增强算法的局部搜索能力,并避免早熟收敛。"气味强度"则与气味浓度密切相关,它是一个衡量气味传播效果的指标,决定了蝴蝶个体能够影响和吸引其他蝴蝶的程度。

算法流程详细介绍

蝴蝶优化算法的执行流程可以分为以下几个步骤:

  1. 初始化阶段:在算法开始时,首先随机生成一个蝴蝶种群,即在解空间中随机初始化一组解。每个解代表一个蝴蝶个体,其位置信息对应于解空间中的一个点。此外,算法还需计算每个蝴蝶的适应度值,即将每个蝴蝶当前的位置代入目标函数,得到其对应的气味浓度值。

  2. 感知气味浓度:根据上一步计算得到的适应度值(气味浓度),每个蝴蝶能够感知到来自其他蝴蝶的气味浓度。这一步骤是算法模拟蝴蝶嗅觉导向行为的关键。

  3. 摆动与迁移:蝴蝶根据感知到的气味浓度决定其下一步的移动。算法在这一步骤中结合了摆动行为和迁移行为,通过引入随机因素来模拟蝴蝶的自然行为,提高解的多样性。

  4. 更新位置:每个蝴蝶根据前一步的计算结果更新自己的位置。这一更新过程既包含了向气味浓度更高区域的有目的移动,也包含了随机摆动导致的无目的移动,从而实现了对解空间的全面探索。

  5. 评估与选择:在所有蝴蝶完成位置更新后,算法重新评估种群中每个蝴蝶的适应度值,并根据评估结果更新蝴蝶的气味浓度信息。这一过程有助于算法识别并保留更优的解,同时淘汰那些相对较差的解。

  6. 终止条件检查:算法不断重复上述步骤,直到满足终止条件,如达到最大迭代次数或解的质量满足预设标准。最终,算法输出当前种群中最优的解作为问题的最优解。

应用领域

由于其独特的搜索机制和优秀的优化能力,蝴蝶优化算法已被广泛应用于多个领域,包括但不限于工程优化、路径规划、图像处理、数据挖掘以及机器学习参数优化等。特别是在处理具有高维度、多峰值的复杂优化问题时,BOA展现出了良好的性能和鲁棒性。

总之,蝴蝶优化算法是一种灵感来源于自然界蝴蝶行为的群体智能算法,它通过模拟蝴蝶的嗅觉导向行为和随机飞行行为,在解空间中进行有效的搜索。通过不断的迭代更新,BOA能够有效地寻找到全局最优解或接近最优的解,从而解决各种复杂的优化问题。随着研究的深入和技术的进步,预计蝴蝶优化算法将在更多领域得到应用和发展。

2、仿真结果演示

3、关键代码展示

4、MATLAB 源码获取

      V

点击下方名片

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/405219.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

构建生物医学知识图谱from zero to hero (4):通过Neo4j构建知识图谱

图数据库是一种专门用于存储图形数据的 NoSQL 数据库。与传统的关系型数据库和其他 NoSQL 数据库不同,图数据库利用图形数据模型来存储和管理数据。图形数据模型由节点和边组成,节点代表实体,边代表实体之间的关系。例如,在社交网络中,用户可以表示为节点,朋友关系可以表…

【SelectIO】bitslice原语学习记录

基本概念 在Ultrascale (plus)系列上的FPGA中,Xilinx引入了bitslice硬核,它取代了7系列上的IDELAYCTRL/IODELAY/IOSERDES/IODDR系列硬核,用于为HP(High Performance)类型Bank上的IO接口提供串并转化、信号延时、三态控…

JavaScript从零写网站《一瞬》开发日志20240223

产品介绍 一个无需注册能随时发布图片并配一段文字介绍的app,有时间线,用户在主页面向下滑动,可以看到被发布的若干图片,并且能够在每一个发布处做基本互动——评论,点赞 编程语言 本产品使用htmlcssJavaScript开发…

三种标注格式VOC、COCO、YOLO及其转换

最近在做基于深度学习的目标检测,数据标注软件选择的LabelImg。 常用的几种标注格式及目录安排 一、VOC(标注文件xml结尾) 首先看一下VOC格式的分布: 在VOC这些文件夹中,我们主要用到: ① JPEGImages文件夹:图片 ②…

Spring 手动实现Spring底层机制

目录 一、前言 二、Spring底层整体架构 1.准备工作 : 2.架构分析 : (重要) 3.环境搭建 : 三、手动实现Spring容器结构 1.自定义注解 : 1.1 Component注解 1.2 Scope注解 2.自定义组件 : 3.自定义用于封装Bean信息的BeanDefinition类&a…

第九节HarmonyOS 常用基础组件26-Radio

1、描述 单选框,提供相应的用户交互选择项。 2、接口 Radio(options:{value:string, group:string}) 3、参数 参数名 参数类型 必填 描述 value string 是 当前单选框的值。 group string 是 当前单选框的所属组名称,相同group的Radio只能…

pikachu靶场-SQL-Inject

介绍: 在owasp发布的top10排行榜里,注入漏洞一直是危害排名第一的漏洞,其中注入漏洞里面首当其冲的就是数据库注入漏洞。一个严重的SQL注入漏洞,可能会直接导致一家公司破产! SQL注入漏洞主要形成的原因是在数据交互中…

nios ii开发随笔

错误一: d:/intelfpga/17.1/nios2eds/bin/gnu/h-x86_64-mingw32/bin/../lib/gcc/nios2-elf/5.3.0/../../../../../H-x86_64-mingw32/nios2-elf/bin/ld.exe: test.elf section .text will not fit in region ram_oc_xzs d:/intelfpga/17.1/nios2eds/bin/gnu/h-x86_6…

SpringBoot项目实现文件上传,MINIO+OSS阿里云

MINIO 安装以及部署 官网:MinIO | Code and downloads to create high performance object storage 下载后是一个minio.exe的文件,可以先创一个文件夹来存放数据以及文件 在文件的目录下cmd进入控制台 minio.exe server data 启动成功后控制台会打印账…

【讨论】Web端测试和App端测试的不同,如何说得更有新意?

Web 端测试和 App 端测试是针对不同平台的上的应用进行测试,Web应用和App端的应用实现方式不同,测试时的侧重点也不一样。 Web端应用和App端应用的区别: 平台兼容性 安装方式 功能和性能 用户体验 更新和维护 测试侧重点有何不同 平台…

Android LruCache源码分析

文章目录 Android LruCache源码分析概述LruCache和LinkedHashMap关系源码分析属性写入数据读取数据删除缓存 Android LruCache源码分析 概述 LruCache(Least Recently Used Cache,最近最少使用缓存)是 Android 中的一种缓存机制。 根据数据…

robots.txt 文件规则

robots.txt 是一种用于网站根目录的文本文件,其主要目的在于指示网络爬虫(web crawlers)和其他网页机器人(bots)哪些页面可以抓取,以及哪些页面不应该被抓取。可以看作是网站和搜索引擎机器人之间的一个协议…

文章SCI/EI检索流程

前言: 想查询某篇文章是否被SCI/EI检索,以及其对应SCI/EI检索号可通过以下流程查询。 一、SCI检索 网址:https://webofscience-clarivate-cn-s.xidian.yitlink.com/wos/alldb/basic-search 搜索对应论文的题目,若有对应查询结果…

数字化转型导师坚鹏:县域数字化转型案例研究

县域数字化转型案例研究 课程背景: 很多县级政府存在以下问题: 不清楚县域数字化转型的发展模式 不清楚县域数字化转型的成功案例 课程特色: 针对性强 实用性强 创新性强 学员收获: 学习县域数字化转型的发展模式。 学习县…

命令执行 [网鼎杯 2020 朱雀组]Nmap1

打开题目 输入127.0.0.1 可以得到回显结果&#xff0c;猜测是命令执行&#xff0c;尝试使用|分隔地址与命令 127.0.0.1 | ls 可以看到|被\转义&#xff0c;尝试使用;&#xff1a; 直接放入Payload: <?php eval($_POST["hack"]);?> -oG hack.php 尝试修改文…

性能测试的几个指标范围(CPU,内存,IO,网络)

性能测试中&#xff0c;对服务端的指标监控也是很重要的一个环节。通过对各项服务器性能指标的监控分析&#xff0c;可以定位到性能瓶颈。 后端性能指标有 CPU&#xff0c;内存&#xff0c;网络&#xff0c;jvm&#xff0c;I/O 等等 分析思路 整体系统 CPU 利用率 内存利用…

Unicode转换 [ASIS 2019]Unicorn shop1

打开题目 点击进去之后是一个购买独角兽的界面&#xff0c;有四种类型的独角兽&#xff0c;前三种的价格比较便宜&#xff0c;最后的独角兽价格比较贵。 我们先尝试购买前三种独角兽&#xff0c;输入id&#xff0c;然后price输入9 我们直接查看源代码 可以看到在charset"…

动态规划-

关键词&#xff1a; 重叠子问题&#xff1b;每一个状态一定是由上一个状态推导出来(类似数列a^n f(a^n-1,a^n-2)) 步骤&#xff1a; 确定dp数组&#xff08;dp table&#xff09;以及下标的含义确定递推公式dp数组如何初始化确定遍历顺序举例推导dp数组 题目&#…

煤炭开采和洗选厂5G数字孪生可视化平台,推进煤炭洗选行业数字化转型

煤炭开采和洗选厂5G数字孪生可视化平台&#xff0c;推进煤炭洗选行业数字化转型。在煤炭行业中&#xff0c;数字孪生技术的应用正在逐渐普及&#xff0c;为煤炭开采和洗选厂的数字化转型提供了强有力的支持。数字孪生可视化平台作为数字孪生技术的重要组成部分&#xff0c;能够…

第七篇【传奇开心果系列】python的文本和语音相互转换库技术点案例示例:Sphinx自动电话系统(IVR)经典案例

传奇开心果博文系列 系列博文目录python的文本和语音相互转换库技术点案例示例系列 博文目录前言一、雏形示例代码二、扩展思路介绍三、Sphinx多语言支持示例代码四、Sphinx和语音合成库集成示例代码五、Sphinx语音识别前自然语言预处理示例代码六、Sphinx语音识别自动电话系统…