STM32学习笔记(十二)丨RTC实时时钟

本篇文章包含的内容

  • 一、计算机底层计时系统——时间戳
    • 1.1 时间戳简介
    • 1.2 GMT/UTC
    • 1.3 C语言和`time.h`库
  • 二、STM32的BKP和RTC时钟
    • 2.1 BKP(Backup Registers)备份寄存器
    • 2.2 RTC(Real Time Clock)实时时钟
      • 2.2.1 RTC简介
      • 2.2.2 RTC的内部结构及工作原理
      • 2.2.3 RTC操作及注意事项

​  本次课程采用单片机型号为STM32F103C8T6。
​  课程链接:江协科技 STM32入门教程


  往期笔记链接:
  STM32学习笔记(一)丨建立工程丨GPIO 通用输入输出
  STM32学习笔记(二)丨STM32程序调试丨OLED的使用
  STM32学习笔记(三)丨中断系统丨EXTI外部中断
  STM32学习笔记(四)丨TIM定时器及其应用(定时中断、内外时钟源选择)
  STM32学习笔记(五)丨TIM定时器及其应用(输出比较丨PWM驱动呼吸灯、舵机、直流电机)
  STM32学习笔记(六)丨TIM定时器及其应用(输入捕获丨测量PWM波形的频率和占空比)
  STM32学习笔记(七)丨TIM定时器及其应用(编码器接口丨用定时器实现编码器测速)
  STM32学习笔记(八)丨ADC模数转换器(ADC单、双通道转换)
  STM32学习笔记(九)丨DMA直接存储器存取(DMA数据转运、DMA+AD多通道转换)
  STM32学习笔记(十)丨I2C通信(使用I2C实现MPU6050和STM32之间通信)
  STM32学习笔记(十一)丨SPI通信(W25Q64芯片简介,使用SPI读写W25Q64存储器芯片)


一、计算机底层计时系统——时间戳

1.1 时间戳简介

在这里插入图片描述

  Unix 时间戳(Unix Timestamp)定义为从UTC/GMT的1970年1月1日0时0分0秒开始所经过的秒数,不考虑闰秒。

  • 时间戳存储在一个秒计数器中,秒计数器为32位/64位的整型变量。

  2038年危机:由于之前的Unix系统采用一个32位的有符号数来计时,这个计时系统最大的计时时间会在2038年的1月19日溢出,这可能会让一部分不健全的计算机程序崩溃。STM32的32位秒计数器是一个无符号的计数器,在2106年才会溢出。

  • 世界上所有时区的秒计数器相同,不同时区通过添加偏移来得到当地时间。

  可以看到,用时间戳来计时的方法是很简单粗暴的一种计时方法,但是计算机底层通过时间戳来计时,有以下几点好处:

  1. 硬件电路设计简单:设计RTC时,只需要一个很大的秒计数器即可,不需要年月日、大月小月、平年闰年等寄存器来记录。
  2. 计算时间间隔时很方便。
  3. 存储方便,只需要一个变量。

  当然,使用时间戳计数器来计时也有一定的缺陷,例如在将秒数转化为我们熟知的时间格式的时候,需要进行复杂的计算,比较占用软件资源。

1.2 GMT/UTC

  • GMT(Greenwich Mean Time)格林尼治标准时间是一种以地球自转为基础的时间计量系统。它将地球自转一周的时间间隔等分为24小时,以此确定计时标准。但是由于地球自转一周的时间实际上是不固定的,它是越来越慢的,所以这种计时系统已经不再适用于现代科学和社会的发展

  • UTC(Universal Time Coordinated)协调世界时是一种以原子钟为基础的时间计量系统。它规定铯133原子基态的两个超精细能级间在零磁场下跃迁辐射9,192,631,770周所持续的时间为1秒。当原子钟计时一天的时间与地球自转一周的时间相差超过0.9秒时,UTC会执行闰秒来保证其计时与地球自转的协调一致。Unix时间戳不考虑闰秒,所以每产生一个闰秒,国家授时中心的标准时间和时间戳的标准时间就会产生一秒的偏差。

1.3 C语言和time.h

在这里插入图片描述
​  在一系列函数中,最复杂的函数是struct tm* localtime(const time*);time_t mktime(struct tm*);,这两个函数也是STM32的RTC编程中需要掌握的函数,所以需要重点掌握,其他的了解即可。
​  struct tm* localtime(const time_t*)函数的参数是一个静态的指针变量,如果不特殊指定为32位计时系统,就默认为64位的计时系统,所以可以认为time_t就是一个64位的int类型的变量。这个函数的返回值是一个结构体指针,在这个结构体中存放一些时间信息,可以供用户方便的查看。time_t mktime(struct tm*)函数也是同理。
在这里插入图片描述

二、STM32的BKP和RTC时钟

2.1 BKP(Backup Registers)备份寄存器

​  BKP可用于存储用户应用程序数据。当VDD(2.0 ~ 3.6V)电源被切断,他们仍然由VBAT(1.8 ~ 3.6V)维持供电。当系统在待机模式下被唤醒,或系统复位或电源复位时,他们也不会被复位

  • TAMPER引脚产生的侵入事件将所有备份寄存器内容清除
  • RTC引脚输出RTC校准时钟(外部设备测量这个输出时钟,可以对内部RTC微小的误差进行校准)、RTC闹钟脉冲或者秒脉冲(可以输出,为别的设备提供时钟)
  • 存储RTC时钟校准寄存器
  • 用户数据存储容量:20字节(中容量和小容量)/ 84字节(大容量和互联型)

​  下图展示了BKP的基本结构,橙色部分为后备区域。BKP是后备区域中的一部分电路,后备区域中还有RTC的相关电路。STM32F103C8T6的VBAT,TAMPER,RTC三个功能复用在了同一个引脚上,所以这三个功能在同一时间只能使用一个。
在这里插入图片描述

2.2 RTC(Real Time Clock)实时时钟

2.2.1 RTC简介

  • RTC是一个独立的定时器,可为系统提供时钟和日历的功能
  • RTC和时钟配置系统处于后备区域,系统复位时数据不清零,VDD(2.0 ~ 3.6V)断电后可借助VBAT(1.8 ~ 3.6V)供电继续走时
  • 32位的可编程计数器,可对应Unix时间戳的秒计数器
  • 20位的可编程预分频器(分频系数可以为1到 2 20 2^{20} 220),可适配不同频率的输入时钟
  • 可选择三种RTC时钟源:
    • HSE(高速外部时钟)时钟除以128(通常为8MHz/128)
    • LSE(低速外部时钟)振荡器时钟(通常为32.768KHz),只有这一路的时钟可以由VBAT供电,所以如果要实现掉电自动走时的功能,必须使用这一路时钟
    • LSI(低速内部时钟)振荡器时钟(40KHz)

时钟信号选择32.768kHz的原因

  1. 32.768kHz对于晶振或振荡器的,在硬件设计或者工业生产时可能会有一些便利,使这一频率的晶振或振荡器稳定性高,益于生产;
  2. 32768恰好为2的15次方,如果要产生一个1Hz的信号供RTC计时,可以简单地设计一个15位的计数器,让其不断计时,它的自然溢出频率就是1Hz,不用额外设计计数器的目标值存储寄存器,也不用把计数值和目标值不断作比较,对于芯片内部的电路设计非常友好。

2.2.2 RTC的内部结构及工作原理

在这里插入图片描述
​  上图展示了RTC的内部框图和工作原理。灰色的部分为后备区域,在主电源断电时可以由VBAT供电继续工作。RTC_DIV余数寄存器是一个自减计数器。自建到0后,在下一个上升沿到来时产生溢出信号,并江RTC_PRL中的值装载进来继续自减。
​  RTC电路可以产生三个中断信号:

  • RTC_Second秒中断:每秒产生一个中断信号。
  • RTC_Overflow溢出中断:这个中断会在2106年触发一次。
  • RTC_Alarm闹钟中断:该中断可以让STM32从待机模式中唤醒,并且执行一个中断服务函数。这可以实现让STM32在一些环境恶劣的地方工作,在节约电量的前提下自动执行定时采集数据的功能。
    在这里插入图片描述
    ​  实际设计的硬件电路及推荐电路如下图所示:
    在这里插入图片描述

2.2.3 RTC操作及注意事项

  • 依次执行以下操作将使能对BKP和RTC的访问
    • 设置RCC_APB1ENR的PWREN和BKPEN,使能PWR和BKP时钟(需要同时开启PWR和BKP的时钟,RTC才能正常使用,RTC并没有单独开启时钟的函数)
    • 设置PWR_CR的DBP,使能对BKP和RTC的访问
  • 若在读取RTC寄存器时,RTC的APB1接口曾经处于禁止状态,则软件首先必须等待RTC_CRL寄存器中的RSF位(寄存器同步标志)被硬件置1(RTC等待同步):由于PCLK1的时钟频率36MHz远大于RTCCLK,有可能在上电开启时,RTC的寄存器还没有更新到APB1总线上,这时将发生读取错误(读取到的值为0)。实际使用时调用一个RTC等待同步的库函数即可。
  • 必须设置RTC_CRL寄存器中的CNF位,使RTC进入配置模式后,才能写入RTC_PRL、RTC_CNT、RTC_ALR寄存器(库函数中已经包含)
  • 对RTC任何寄存器的写操作,都必须在前一次写操作结束后进行。可以通过查询RTC_CR寄存器中的RTOFF状态位,判断RTC寄存器是否处于更新中。仅当RTOFF状态位是1时,才可以写入RTC寄存器(调用一个等待的库 函数即可)

​  课程链接:江协科技 STM32入门教程,欢迎大家一起交流学习。
​  持续更新完善中……


  原创笔记,码字不易,欢迎点赞,收藏~ 如有谬误敬请在评论区不吝告知,感激不尽!博主将持续更新有关嵌入式开发、机器学习方面的学习笔记~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/40487.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

概率论和随机过程的学习和整理20:条件概率我知道,但什么是条件期望?可用来解决递归问题

目录 1 目标问题: 什么是条件期望? 条件期望有什么用? 2 条件期望,全期望公式 3 条件期望,全期望公式 和 条件概率,全概率公式的区别和联系 3.1 公式如下 3.2 区别和联系 3.3 概率和随机过程 4 有什…

简单认识MySQL数据库索引

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 一、索引的概念1、简介2、作用3、索引的副作用:4、创建索引的原则依据5、索引的分类 二、索引的增删改查1.创建索引(1)创建普通索…

VoIP监控工具有什么作用

VoIP 监控工具利用思科的 IPSLA 技术生成合成流量并监控客户端体验的呼叫质量。与被动监控VoIP指标相反,IPSLA技术允许IT管理员主动并在潜在问题发生之前检测到它们,这使组织能够轻松遵守严格的SLA指标。 思科 IPSLA 技术在两台设备之间创建流量&#x…

使用semanage管理SELinux安全策略

semanage命令用于管理SELinux的策略,格式为“semanage [选项] [文件]”。 SELinux服务极大地提升了Linux系统的安全性,将用户权限牢牢地锁在笼子里。semanage命令可以设置文件、目录的策略,还可以管理网络端口、消息接口。 常用参数&#xf…

240. 搜索二维矩阵 II

题目描述&#xff1a; 主要思路&#xff1a; 利用矩阵中的单调性进行搜索。 class Solution { public:bool searchMatrix(vector<vector<int>>& matrix, int target) {int nmatrix.size(),mmatrix[0].size();int in-1,j0;while(i>0&&j<m){if(m…

架构训练营学习笔记:4-2 存储架构模式之复制架构

高可用的关键指标 问题&#xff1a;分为故障跟灾难。不是有了多活架构就不在用复制架构 &#xff0c;还是之前的合适原则&#xff1a;多活架构的技术复杂度 跟成本都比复制架构高。 高可用的关键指标 恢复时间目标(RecoveryTimeObjective&#xff0c;RTO)指为避免在灾难发生后…

测试基础 Android 应用测试总结

目录 启动&#xff1a; 功能介绍&#xff0c;引导图&#xff0c;流量提示等&#xff1a; 权限&#xff1a; 文件错误 屏幕旋转&#xff1a; 流量&#xff1a; 缓存&#xff08;/sdcard/data/com.your.package/cache/&#xff09;&#xff1a; 正常中断&#xff1a; 异…

jupyter notebook更换虚拟环境(内核)

jupyter notebook更换虚拟环境&#xff08;内核&#xff09; 创建一个新的虚拟环境 # stk_env 虚拟环境的名字&#xff0c;任取。 conda create -n stkenv python3.9激活虚拟环境 conda activate stkenv安装ipykernel # 为该虚拟环境&#xff0c;安装内核。 conda install -c a…

【Spring core学习三】对象装配:获取Bean对象的四种方式

目录 对象装配的四种方式 &#x1f337;1、Autowired属性注入&#xff08;使用最多&#xff09; &#x1f337;2、Setter注入 &#x1f337;3、构造函数注入 &#x1f337;4、Resource&#xff1a;另⼀种注⼊关键字 对象装配的四种方式 对象装配&#xff1a;获取bean对象也…

linux之Ubuntu系列(-)常见指令 重定向

Ubuntu 中文 版本 注意点 通过修改语言改成英文 在终端录入&#xff1a;export LANGen_US 在终端录入&#xff1a;xdg-user-dirs-gtk-update 单用户和多用户 命令格式 command [-选项] [参数] –查看命令的帮助 命令 --help man 命令 |操作键| 功能| |空格键|-显示手册的下…

B070-项目实战-用户模块--手机注册

目录 用户模块需求分析静态网站部署与调试两种前端项目的部署两种前端项目的调试(热部署)创建静态web项目 注册分析与设计分析需求设计 界面设计&#xff08;ui&#xff09;设计表&#xff08;后台&#xff09; 流程设计&#xff08;后台&#xff09;三范式表设计流程设计 相关…

Appium+python自动化(十二)- Android UIAutomator终极定位凶器(超详解)

简介 乍眼一看&#xff0c;小伙伴们觉得这部分其实在异性兄弟那里就做过介绍和分享了&#xff0c;其实不然&#xff0c;上次介绍和分享的大哥是uiautomatorviewer&#xff0c;是一款定位工具。今天介绍的是一个java库&#xff0c;提供执行自动化测试的各种API。 Android团队在4…

SPSS中级统计--S05-5多个样本率的卡方检验及两两比较

小伙伴们&#xff0c;今天我们学习SPSS中级统计--多个样本率的卡方检验及两两比较。 例1、2 C列联表资料 上期我们学习了双向无序RC表资料&#xff08;c2&#xff09;的检验&#xff0c;案例如下&#xff0c;比较不同污染地区的动物畸形率是否有差异&#xff1f; H0&#xff…

旅游管理系统的设计与实现(论文+源码)_kaic

摘 要 旅游业走过了改革开放&#xff0c;到现在依旧蓬勃发展。但是放眼国际社会&#xff0c;我们在旅游业发展的深度和广度上所做的努力还远远不够。在中国&#xff0c;旅游业也将成为经济崛起中的重要一环。目前&#xff0c;我们生活在一个信息时代里。无论是工作&#xff0c;…

uniapp动态获取列表中每个下标的高度赋值给另一个数组(完整代码附效果图)

uniapp实现动态获取列表中每个下标的高度&#xff0c;赋值给另一个数组。 先看效果图&#xff1a; 完整代码&#xff1a; <template><div class""><div class"">我是A列表&#xff0c;我的高度不是固定的</div><div class&qu…

Docker使用总结

Docker 1.什么是 Docker 官网的介绍是“Docker is the world’s leading software container platform.” 官方给Docker的定位是一个应用容器平台。 Docker 是一个容器平台的领导者 Docker 容器平台 Docker 应用容器平台 application项目 Mysql Redis MongoDB ElasticSeacrh …

我国版式文档格式OFD前端WEB展示之EasyOFD

EasyOFD an ofd file web shower 一个在web端展示ofd文件的控件&#xff0c;该控件基于CANVAS绘制。 该控件使用了以下外部程序 1&#xff09;jszip&#xff1a;解决解压文件。 2&#xff09;x2js: 解决XML文件到JS转换 3&#xff09;easyjbig2: 解决ofd内部使用jb2文件存储的…

java项目之足球赛会管理系统(ssm+mysql+jsp)

风定落花生&#xff0c;歌声逐流水&#xff0c;大家好我是风歌&#xff0c;混迹在java圈的辛苦码农。今天要和大家聊的是一款基于ssm的足球赛会管理系统。技术交流和部署相关看文章末尾&#xff01; 项目地址&#xff1a; https://download.csdn.net/download/sinat_26552841…

什么是渲染?一文看懂,萌新赶紧收藏码住!

十四五规划提出“加快数字化发展&#xff0c;建设数字中国”&#xff0c;数字技术的快速发展&#xff0c;从起初的内容创建到最终的效果呈现&#xff0c;都离不开渲染技术。目前&#xff0c;渲染技术被广泛应用于教育、医疗、影视动画、建筑设计等多个领域。它能有效满足用户对…

docker基础1——架构组成、安装配置

文章目录 一、发展起源1.1 传统虚拟化与容器虚拟化1.2 docker底层核心技术1.2.1 命名空间1.2.2 控制组 1.3 docker工作方式1.4 docker容器编排1.5 docker优劣势1.6 docker架构组成 二、yum安装docker三、配置docker加速器 一、发展起源 背景了解&#xff1a; 容器是内核里的一项…