基于机器学习、遥感和Penman-Monteith方程的农田蒸散发混合模型研究_刘燕_2022

基于机器学习、遥感和Penman-Monteith方程的农田蒸散发混合模型研究_刘燕_2022

  • 摘要
    • 关键词
  • 1 绪论
  • 2 数据与方法
    • 2.1 数据
    • 2.2 机器学习算法
    • 2.3 Penman-Monteith方程
    • 2.4 Medlyn公式
    • 2.5 模型性能评估
  • 3 基于机器学习算法的混合模型估算农田蒸散量的评价与比较
  • 4 利用人工神经网络算法和遥感植被指数改善PM方程估算农田蒸散量的精度
  • 5 结论

在这里插入图片描述

摘要

  本文的研究内容旨在发展能够准确获取全球或区域尺度蒸散量的混合模型,主要工作包括:
  (1)构建了六种不同的混合蒸散模型。这六种混合模型基于六种传统的机器学习算法,分别是KNN、RF、SVM、XGBoost、ANN、LSTM。然后使用17个全球分布的农田通量站点的涡度协方差通量塔的通量数据构建模型。
  (2)分析了十种不同的输入因子组合对混合模型估算农田蒸散量性能的影响。将气象数据分别和一种、两种、三种以及四种遥感数据输入到机器学习方法中,构建气孔导度模型,进而运用Penman-Monteith(PM)方程计算蒸散。
  (3)评估了六种基于机器学习的混合模型在使用相同的输入变量下估算蒸散的精度,以得到一种较优的基于机器学习的估算蒸散方法。
  (4)构建Medlyn-Penman-Monteith模型。将得到的较优的混合机器学习模型和Medlyn-PM模型比较,以得到适用于不同的环境条件的模型,提升模型模拟区域尺度农田蒸散的精度,能够为区域尺度准确估算农田蒸散提供方法支持。
  (5)研究了ANN-PM模型在干旱环境下的准确性。利用ANN-PM模型的模拟值与观测值之间的相关系数(r)来评估模型的性能。通过比较ANN-PM模型模拟蒸散值与观测值之间的时间序列图,研究模型是否能捕捉干旱站点蒸散的时间序列变化。

关键词

蒸散;机器学习;遥感;Penman-Monteith方程

1 绪论

  本文的主要研究内容如下:
  (1)基于六种不同的ML算法,使用全球17个通量站点的气象数据和中分辨率成像光谱仪(Moderate-resolution Imaging Spectroradiometer, MODIS)数据构建了估算蒸散的六种混合模型,并优化模型的参数。
  (2)分析十种不同的输入变量组合对混合模型的影响。将十种输入因子分别输入到混合模型中,比较每种模型的相关系数和均方根误差来衡量不同的变量组合。进一步比较基于机器学习算法的六种混合模型使用相同的输入变量估算蒸散的性能,得到了一种性能较优的混合模型。
  (3)将上述得到的基于ML算法的混合模型与构建的Medlyn-PM模型比较,评估其估算蒸散的性能。最后研究性能较好的混合模型在干旱环境下的准确性。

2 数据与方法

2.1 数据

2.1.1 通量站点数据
  本文使用来自FLUXNET2015数据集的5个气象因子数据和观测ET数据,日尺度上时间连续的气象数据包括气温(Temperature, Ta)、降水(Precipitation, P)、大气二氧化碳浓度(Carbon dioxide concentration, Ca)、太阳辐射(Solar radiation, SW)和饱和水汽压差(Vapor Pressure Deficit, VPD)。
2.1.2 遥感数据
  MODIS数据包括归一化差异植被指数(NDVI)、增强植被指数( EVI)、植被近红外反射率(NIRv) 和 短 波 红 外 波 段 (SWIR)。

2.2 机器学习算法

  六种机器学习算法(KNN、RF、SVM、XGBoost、ANN、LSTM)

2.3 Penman-Monteith方程

  本研究构建的六种基于ML算法的混合模型和Medlyn-PM模型都是基于PM方程的物理框架,主要差异在于Gs的计算。PM方程的计算公式如下:
在这里插入图片描述
在这里插入图片描述

2.4 Medlyn公式

  基于PM方程的ET区域尺度建模的关键是要准确地量化表面电导,这是ET建模中不确定性的最大来源。因此,Medlyn等将最优气孔行为理论与光合作用模型相结合,为表征Gs提供了一个新的生物物理框架。该Gs模型的计算方法如下:
在这里插入图片描述
在这里插入图片描述
  本文将Medlyn模型与ML方法相结合,研究哪种纯粹基于ML的Gs方法或者Medlyn模型和ML的集成可以表现得更好。

2.5 模型性能评估

  r、RMSE、MAE

3 基于机器学习算法的混合模型估算农田蒸散量的评价与比较

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4 利用人工神经网络算法和遥感植被指数改善PM方程估算农田蒸散量的精度

4.1 基于Medlyn公式的混合模型
4.2 干旱气候下ET估计模型的评估
4.3 Medlyn公式的参数优化
4.4 实验结果分析
4.4.1 ANN-PM模型与Medlyn-PM模型的比较
4.4.2 评估ANN-PM模型在干旱气候下估算蒸散的性能

5 结论

  主要结论如下:
  (1)不同模型的最优参数:基于KNN模型的K值为5,基于RF模型和XGBoost模型的max_depth分别为8和7,基于ANN模型和LSTM模型的隐含层数都为2、每层神经元数分别是48和40,基于Medlyn模型的待定系数g0=0.06、g1=3.94。
  (2)与使用一种RS因子的混合模型相比,使用两种RS因子的混合模型呈现了较好的结果(RMSE=18.60-26.29 W m-2,r=0.87-0.96);使用三种或四种RS因子的混合模型表现出的性能和使用两种RS因子的混合模型的性能相似。
  (3)基于不同的ML算法的混合模型中,ANN-PM模型表现出较强地估算蒸散的能力(RMSE=18.67-20.69 W m-2,r=0.90-0.94)。
  (4)ANN-PM模型和Medlyn-PM模型相比,ANN-PM模型在估算农田蒸散方面具有较好的性能(RMSE=19.23-19.71 W m-2,r=0.93),拟合效果好,精度较高且适用范围广。
  (5)ANN-PM模型能较好地捕捉干旱站点(DE-Rus,US-Tw2,US-Tw3和US- Twt)ET的时间序列变化。ANN-PM模型在干旱站点估算蒸散的性能是合理的,其在干旱站点预测的ET与观测值的平均r是0.87,所有站点的平均r是0.86。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/404863.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

js使用import到本js文件中的函数时报错 Error [ERR_MODULE_NOT_FOUND]: Cannot find module

node:internal/process/esm_loader:97internalBinding(errors).triggerUncaughtException(^Error [ERR_MODULE_NOT_FOUND]: Cannot find module D:\桌面\Pagesizedetection\lib\screensize imported from D:\桌面\Pagesizedetection\index.js Did you mean to import ../lib/sc…

文件上传漏洞--Upload-labs--Pass09(在某些版本的靶场里是Pass10)--点+空格+点 绕过

一、什么是 点空格点 绕过 顾名思义,将 test.php 改为 test.php. . ,观察到后缀名php后多出了 点空格点。那么 点空格点 是如何进行绕过的,在什么情况下可以使用,让我们结合题目讲解。 二、代码审计 1、查看题目源代码上半部分&…

Nginx 配置前端工程项目二级目录

前提: 前端工程技术框架: vue 后端工程技术工程:spring boot 需求:需要通过二级目录访问前端工程: 如之前:http://127.0.0.1:80/ 改成 http://127.0.0.1/secondDirectory:80/ 一.前端工程支持二级目录 1.编译文…

CrossOver虚拟机软件2024有哪些功能?最新版本支持哪些游戏?

CrossOver由codewaver公司开发的类虚拟机软件,目的是使linux和Mac OS X操作系统和window系统兼容。CrossOver不像Parallels或VMware的模拟器,而是实实在在Mac OS X系统上运行的一个软件。CrossOvers能够直接在Mac上运行Windows软件与游戏,而不…

链表之“无头单向非循环链表”

目录 ​编辑 1.顺序表的问题及思考 2.链表 2.1链表的概念及结构 2.2无头单向非循环链表的实现 1.创建结构体 2.单链表打印 3.动态申请一个节点 3.单链表尾插 4.单链表头插 5.单链表尾删 6.单链表头删 7.单链表查找 8.单链表在pos位置之前插入x 9.单链表删除pos位…

力扣645. 错误的集合(排序,哈希表)

Problem: 645. 错误的集合 文章目录 题目描述思路复杂度Code 题目描述 思路 1.排序 1.对nums数组按从小到大的顺序排序; 2.遍历数组时若判断两个相邻的元素则找到重复元素; 3.记录一个整形变量prev一次置换当前位置元素并与其作差,若差等于2着说明缺失的…

一篇文章搞懂CDN加速原理

目录 一、什么是CDN CDN对网络的优化作用主要体现在以下几个方面: 二、CDN工作原理 CDN网络的组成元素: 三、名词解释 3.1 CNAME记录(CNAME record) 3.2 CNAME域名 3.3 DNS 3.4 回源host 3.5 协议回源 一、什么是CDN CD…

linux增加物理磁盘并挂载到文件系统

centos7增加物理磁盘并挂载到文件系统 1、查看所有磁盘情况 fdisk -l2、创建挂载路径 mkdir /data3、格式化磁盘 #磁盘filesystem(上图标红处) mkfs.xfs -f /dev/sda建议 与其它磁盘文件系统保持一致,我这里是xfs 可通过 cat /dev/sda查看 4、挂载 mount /dev/…

今日必读的9篇大模型论文

1.Customize-A-Video:文生视频,可以自由定制了 图像定制在文本到图像(T2I)扩散模型中已经得到了广泛的研究,并取得了令人印象深刻的成果和应用。随着文本到视频(T2V)扩散模型的兴起&#xff0c…

从零开始手写mmo游戏从框架到爆炸(二十一)— 战斗系统二

导航:从零开始手写mmo游戏从框架到爆炸(零)—— 导航-CSDN博客 上一章(从零开始手写mmo游戏从框架到爆炸(二十)— 战斗系统一-CSDN博客)我们只是完成了基本的战斗,速度属性并没有…

前端数据可视化:ECharts使用

可视化介绍 ​  ​  应对现在数据可视化的趋势,越来越多企业需要在很多场景(营销数据,生产数据,用户数据)下使用,可视化图表来展示体现数据,让数据更加直观,数据特点更加突出。   ​  数据可视化主要目…

读取7400MB/s!华为发布eKitStor Xtreme M.2闪存条

今日,华为举行数据存储新春新品发布会,不仅发布全新数据湖解决方案,华为还针对商业市场与分销市场发布了全闪存存储新品。 据介绍,面向游戏加速、影视编辑、户外作业等场景,华为发布eKitStor Xtreme系列高性能M.2闪存条…

Leetcode3035. 回文字符串的最大数量

Every day a Leetcode 题目来源:3035. 回文字符串的最大数量 解法1:哈希 排序 由于可以随意交换字母,先把所有字母都取出来,然后考虑如何填入各个字符串。 如果一个奇数长度字符串最终是回文串,那么它正中间的那…

一文读懂Linux内核中的Device mapper映射机制

一、 简介 本文总结Device mapper的映射机制。Device mapper是Linux2.6内核中提供的一种逻辑设备到物理设备的映射框架机制,在该机制下,用户可以很方便的根据自己的需要指定实现存储资源的管理策略,当前比较流行的Linux的逻辑卷管理器比如&a…

轻松打造智能化性能测试监控平台:【JMeter+Grafana+Influxdb】的优化整合方案

在当前激烈的市场竞争中,创新和效率成为企业发展的核心要素之一。在这种背景下,如何保证产品和服务的稳定性、可靠性以及高效性就显得尤为重要。 而在软件开发过程中,性能测试是一项不可或缺的环节,它可以有效的评估一个系统、应…

igolang学习3,golang 项目中配置gin的web框架

1.go 初始化 mod文件 go mod init gin-ranking 2.gin的crm框架 go get -u github.com/gin-gonic/gin 3.go.mod爆红解决

渗透测试之RCE漏洞

RCE(remote command execute)远程命令执行。应用程序的某些功能需要调用可以执行的系统命令的函数,如果这些函数或者函数的参数被用户控制,就可能通过命令连接符将恶意的命令拼接到函数中,从而执行系统命令。 常见的命…

WordPress使用

WordPress功能菜单 仪表盘 可以查看网站基本信息和内容。 文章 用来管理文章内容,分类以及标签。编辑文章以及设置分类标签,分类和标签可以被添加到 外观-菜单 中。 分类名称自定义;别名为网页url链接中的一部分,最好别设置为中文…

mybatis 集成neo4j实现

文章目录 前言一、引入jar包依赖二、配置 application.properties三、Mybatis Neo4j分页插件四、Mybatis Neo4j自定义转换器handler五、MybatisNeo4j代码示例总结 前言 MyBatis是一个基于Java语言的持久层框架,它通过XML描述符或注解将对象与存储过程或SQL语句进行…

【C++私房菜】面向对象中的多重继承以及菱形继承

文章目录 一、多重继承1、多重继承概念2、派生类构造函数和析构函数 二、菱形继承和虚继承2、虚继承后的构造函数和析构函数 三、has-a 与 is-a 一、多重继承 1、多重继承概念 **多重继承(multiple inheritance)**是指从多个直接基类中产生派生类的能力…