C++力扣题目 392--判断子序列 115--不同的子序列 583--两个字符串的删除操作 72--编辑操作

392.判断子序列

力扣题目链接(opens new window)

给定字符串 s 和 t ,判断 s 是否为 t 的子序列。

字符串的一个子序列是原始字符串删除一些(也可以不删除)字符而不改变剩余字符相对位置形成的新字符串。(例如,"ace"是"abcde"的一个子序列,而"aec"不是)。

示例 1:

  • 输入:s = "abc", t = "ahbgdc"
  • 输出:true

示例 2:

  • 输入:s = "axc", t = "ahbgdc"
  • 输出:false

提示:

  • 0 <= s.length <= 100
  • 0 <= t.length <= 10^4

两个字符串都只由小写字符组成。

#思路

(这道题也可以用双指针的思路来实现,时间复杂度也是O(n))

这道题应该算是编辑距离的入门题目,因为从题意中我们也可以发现,只需要计算删除的情况,不用考虑增加和替换的情况。

所以掌握本题的动态规划解法是对后面要讲解的编辑距离的题目打下基础

动态规划五部曲分析如下:

  1. 确定dp数组(dp table)以及下标的含义

dp[i][j] 表示以下标i-1为结尾的字符串s,和以下标j-1为结尾的字符串t,相同子序列的长度为dp[i][j]

注意这里是判断s是否为t的子序列。即t的长度是大于等于s的。

有同学问了,为啥要表示下标i-1为结尾的字符串呢,为啥不表示下标i为结尾的字符串呢?

为什么这么定义我在 718. 最长重复子数组 (opens new window)中做了详细的讲解。

其实用i来表示也可以!

但我统一以下标i-1为结尾的字符串来计算,这样在下面的递归公式中会容易理解一些,如果还有疑惑,可以继续往下看。

  1. 确定递推公式

在确定递推公式的时候,首先要考虑如下两种操作,整理如下:

  • if (s[i - 1] == t[j - 1])
    • t中找到了一个字符在s中也出现了
  • if (s[i - 1] != t[j - 1])
    • 相当于t要删除元素,继续匹配

if (s[i - 1] == t[j - 1]),那么dp[i][j] = dp[i - 1][j - 1] + 1;,因为找到了一个相同的字符,相同子序列长度自然要在dp[i-1][j-1]的基础上加1(如果不理解,在回看一下dp[i][j]的定义

if (s[i - 1] != t[j - 1]),此时相当于t要删除元素,t如果把当前元素t[j - 1]删除,那么dp[i][j] 的数值就是 看s[i - 1]与 t[j - 2]的比较结果了,即:dp[i][j] = dp[i][j - 1];

其实这里 大家可以发现和 1143.最长公共子序列 (opens new window)的递推公式基本那就是一样的,区别就是 本题 如果删元素一定是字符串t,而 1143.最长公共子序列 是两个字符串都可以删元素。

  1. dp数组如何初始化

从递推公式可以看出dp[i][j]都是依赖于dp[i - 1][j - 1] 和 dp[i][j - 1],所以dp[0][0]和dp[i][0]是一定要初始化的。

这里大家已经可以发现,在定义dp[i][j]含义的时候为什么要表示以下标i-1为结尾的字符串s,和以下标j-1为结尾的字符串t,相同子序列的长度为dp[i][j]

因为这样的定义在dp二维矩阵中可以留出初始化的区间,如图:

392.判断子序列

如果要是定义的dp[i][j]是以下标i为结尾的字符串s和以下标j为结尾的字符串t,初始化就比较麻烦了。

dp[i][0] 表示以下标i-1为结尾的字符串,与空字符串的相同子序列长度,所以为0. dp[0][j]同理。

vector<vector<int>> dp(s.size() + 1, vector<int>(t.size() + 1, 0));

  1. 确定遍历顺序

同理从递推公式可以看出dp[i][j]都是依赖于dp[i - 1][j - 1] 和 dp[i][j - 1],那么遍历顺序也应该是从上到下,从左到右

如图所示:

392.判断子序列1

  1. 举例推导dp数组

以示例一为例,输入:s = "abc", t = "ahbgdc",dp状态转移图如下:

392.判断子序列2

dp[i][j]表示以下标i-1为结尾的字符串s和以下标j-1为结尾的字符串t 相同子序列的长度,所以如果dp[s.size()][t.size()] 与 字符串s的长度相同说明:s与t的最长相同子序列就是s,那么s 就是 t 的子序列。

图中dp[s.size()][t.size()] = 3, 而s.size() 也为3。所以s是t 的子序列,返回true。

动规五部曲分析完毕,C++代码如下:

class Solution {
public:
    bool isSubsequence(string s, string t) {
        vector<vector<int>> dp(s.size() + 1, vector<int>(t.size() + 1, 0));
        for (int i = 1; i <= s.size(); i++) {
            for (int j = 1; j <= t.size(); j++) {
                if (s[i - 1] == t[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;
                else dp[i][j] = dp[i][j - 1];
            }
        }
        if (dp[s.size()][t.size()] == s.size()) return true;
        return false;
    }
};

  • 时间复杂度:O(n × m)
  • 空间复杂度:O(n × m)

#总结

这道题目算是编辑距离的入门题目(毕竟这里只是涉及到减法),也是动态规划解决的经典题型。

这一类题都是题目读上去感觉很复杂,模拟一下也发现很复杂,用动规分析完了也感觉很复杂,但是最终代码却很简短。

在之前的题目讲解中,我们讲了 1143.最长公共子序列 (opens new window),大家会发现 本题和 1143.最长公共子序列 的相似之处。

编辑距离的题目最能体现出动规精髓和巧妙之处,大家可以好好体会一下。

 

115.不同的子序列

力扣题目链接(opens new window)

给定一个字符串 s 和一个字符串 t ,计算在 s 的子序列中 t 出现的个数。

字符串的一个 子序列 是指,通过删除一些(也可以不删除)字符且不干扰剩余字符相对位置所组成的新字符串。(例如,"ACE" 是 "ABCDE" 的一个子序列,而 "AEC" 不是)

题目数据保证答案符合 32 位带符号整数范围。

115.不同的子序列示例

提示:

  • 0 <= s.length, t.length <= 1000
  • s 和 t 由英文字母组成

#思路

这道题目如果不是子序列,而是要求连续序列的,那就可以考虑用KMP。

这道题目相对于72. 编辑距离,简单了不少,因为本题相当于只有删除操作,不用考虑替换增加之类的。

但相对于刚讲过的动态规划:392.判断子序列 (opens new window)就有难度了,这道题目双指针法可就做不了了,来看看动规五部曲分析如下:

  1. 确定dp数组(dp table)以及下标的含义

dp[i][j]:以i-1为结尾的s子序列中出现以j-1为结尾的t的个数为dp[i][j]。

为什么i-1,j-1 这么定义我在 718. 最长重复子数组 (opens new window)中做了详细的讲解。

  1. 确定递推公式

这一类问题,基本是要分析两种情况

  • s[i - 1] 与 t[j - 1]相等
  • s[i - 1] 与 t[j - 1] 不相等

当s[i - 1] 与 t[j - 1]相等时,dp[i][j]可以有两部分组成。

一部分是用s[i - 1]来匹配,那么个数为dp[i - 1][j - 1]。即不需要考虑当前s子串和t子串的最后一位字母,所以只需要 dp[i-1][j-1]。

一部分是不用s[i - 1]来匹配,个数为dp[i - 1][j]。

这里可能有录友不明白了,为什么还要考虑 不用s[i - 1]来匹配,都相同了指定要匹配啊

例如: s:bagg 和 t:bag ,s[3] 和 t[2]是相同的,但是字符串s也可以不用s[3]来匹配,即用s[0]s[1]s[2]组成的bag。

当然也可以用s[3]来匹配,即:s[0]s[1]s[3]组成的bag。

所以当s[i - 1] 与 t[j - 1]相等时,dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];

当s[i - 1] 与 t[j - 1]不相等时,dp[i][j]只有一部分组成,不用s[i - 1]来匹配(就是模拟在s中删除这个元素),即:dp[i - 1][j]

所以递推公式为:dp[i][j] = dp[i - 1][j];

这里可能有录友还疑惑,为什么只考虑 “不用s[i - 1]来匹配” 这种情况, 不考虑 “不用t[j - 1]来匹配” 的情况呢。

这里大家要明确,我们求的是 s 中有多少个 t,而不是 求t中有多少个s,所以只考虑 s中删除元素的情况,即 不用s[i - 1]来匹配 的情况。

  1. dp数组如何初始化

从递推公式dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j]; 和 dp[i][j] = dp[i - 1][j]; 中可以看出dp[i][j] 是从上方和左上方推导而来,如图:,那么 dp[i][0] 和dp[0][j]是一定要初始化的。

每次当初始化的时候,都要回顾一下dp[i][j]的定义,不要凭感觉初始化。

dp[i][0]表示什么呢?

dp[i][0] 表示:以i-1为结尾的s可以随便删除元素,出现空字符串的个数。

那么dp[i][0]一定都是1,因为也就是把以i-1为结尾的s,删除所有元素,出现空字符串的个数就是1。

再来看dp[0][j],dp[0][j]:空字符串s可以随便删除元素,出现以j-1为结尾的字符串t的个数。

那么dp[0][j]一定都是0,s如论如何也变成不了t。

最后就要看一个特殊位置了,即:dp[0][0] 应该是多少。

dp[0][0]应该是1,空字符串s,可以删除0个元素,变成空字符串t。

初始化分析完毕,代码如下:

vector<vector<long long>> dp(s.size() + 1, vector<long long>(t.size() + 1));
for (int i = 0; i <= s.size(); i++) dp[i][0] = 1;
for (int j = 1; j <= t.size(); j++) dp[0][j] = 0; // 其实这行代码可以和dp数组初始化的时候放在一起,但我为了凸显初始化的逻辑,所以还是加上了。

  1. 确定遍历顺序

从递推公式dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j]; 和 dp[i][j] = dp[i - 1][j]; 中可以看出dp[i][j]都是根据左上方和正上方推出来的。

所以遍历的时候一定是从上到下,从左到右,这样保证dp[i][j]可以根据之前计算出来的数值进行计算。

代码如下:

for (int i = 1; i <= s.size(); i++) {
    for (int j = 1; j <= t.size(); j++) {
        if (s[i - 1] == t[j - 1]) {
            dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
        } else {
            dp[i][j] = dp[i - 1][j];
        }
    }
}

  1. 举例推导dp数组

以s:"baegg",t:"bag"为例,推导dp数组状态如下:

115.不同的子序列

如果写出来的代码怎么改都通过不了,不妨把dp数组打印出来,看一看,是不是这样的。

动规五部曲分析完毕,代码如下:

class Solution {
public:
    int numDistinct(string s, string t) {
        vector<vector<uint64_t>> dp(s.size() + 1, vector<uint64_t>(t.size() + 1));
        for (int i = 0; i < s.size(); i++) dp[i][0] = 1;
        for (int j = 1; j < t.size(); j++) dp[0][j] = 0;
        for (int i = 1; i <= s.size(); i++) {
            for (int j = 1; j <= t.size(); j++) {
                if (s[i - 1] == t[j - 1]) {
                    dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
                } else {
                    dp[i][j] = dp[i - 1][j];
                }
            }
        }
        return dp[s.size()][t.size()];
    }
};
  • 时间复杂度: O(n * m)
  • 空间复杂度: O(n * m)

 

583. 两个字符串的删除操作

力扣题目链接(opens new window)

给定两个单词 word1 和 word2,找到使得 word1 和 word2 相同所需的最小步数,每步可以删除任意一个字符串中的一个字符。

示例:

  • 输入: "sea", "eat"
  • 输出: 2
  • 解释: 第一步将"sea"变为"ea",第二步将"eat"变为"ea"

#思路

#动态规划一

本题和动态规划:115.不同的子序列 (opens new window)相比,其实就是两个字符串都可以删除了,情况虽说复杂一些,但整体思路是不变的。

这次是两个字符串可以相互删了,这种题目也知道用动态规划的思路来解,动规五部曲,分析如下:

  1. 确定dp数组(dp table)以及下标的含义

dp[i][j]:以i-1为结尾的字符串word1,和以j-1位结尾的字符串word2,想要达到相等,所需要删除元素的最少次数。

这里dp数组的定义有点点绕,大家要撸清思路。

  1. 确定递推公式
  • 当word1[i - 1] 与 word2[j - 1]相同的时候
  • 当word1[i - 1] 与 word2[j - 1]不相同的时候

当word1[i - 1] 与 word2[j - 1]相同的时候,dp[i][j] = dp[i - 1][j - 1];

当word1[i - 1] 与 word2[j - 1]不相同的时候,有三种情况:

情况一:删word1[i - 1],最少操作次数为dp[i - 1][j] + 1

情况二:删word2[j - 1],最少操作次数为dp[i][j - 1] + 1

情况三:同时删word1[i - 1]和word2[j - 1],操作的最少次数为dp[i - 1][j - 1] + 2

那最后当然是取最小值,所以当word1[i - 1] 与 word2[j - 1]不相同的时候,递推公式:dp[i][j] = min({dp[i - 1][j - 1] + 2, dp[i - 1][j] + 1, dp[i][j - 1] + 1});

因为 dp[i][j - 1] + 1 = dp[i - 1][j - 1] + 2,所以递推公式可简化为:dp[i][j] = min(dp[i - 1][j] + 1, dp[i][j - 1] + 1);

这里可能不少录友有点迷糊,从字面上理解 就是 当 同时删word1[i - 1]和word2[j - 1],dp[i][j-1] 本来就不考虑 word2[j - 1]了,那么我在删 word1[i - 1],是不是就达到两个元素都删除的效果,即 dp[i][j-1] + 1。

  1. dp数组如何初始化

从递推公式中,可以看出来,dp[i][0] 和 dp[0][j]是一定要初始化的。

dp[i][0]:word2为空字符串,以i-1为结尾的字符串word1要删除多少个元素,才能和word2相同呢,很明显dp[i][0] = i。

dp[0][j]的话同理,所以代码如下:

vector<vector<int>> dp(word1.size() + 1, vector<int>(word2.size() + 1));
for (int i = 0; i <= word1.size(); i++) dp[i][0] = i;
for (int j = 0; j <= word2.size(); j++) dp[0][j] = j;

  1. 确定遍历顺序

从递推公式 dp[i][j] = min(dp[i - 1][j - 1] + 2, min(dp[i - 1][j], dp[i][j - 1]) + 1); 和dp[i][j] = dp[i - 1][j - 1]可以看出dp[i][j]都是根据左上方、正上方、正左方推出来的。

所以遍历的时候一定是从上到下,从左到右,这样保证dp[i][j]可以根据之前计算出来的数值进行计算。

  1. 举例推导dp数组

以word1:"sea",word2:"eat"为例,推导dp数组状态图如下:

583.两个字符串的删除操作1

以上分析完毕,代码如下:

class Solution {
public:
    int minDistance(string word1, string word2) {
        vector<vector<int>> dp(word1.size() + 1, vector<int>(word2.size() + 1));
        for (int i = 0; i <= word1.size(); i++) dp[i][0] = i;
        for (int j = 0; j <= word2.size(); j++) dp[0][j] = j;
        for (int i = 1; i <= word1.size(); i++) {
            for (int j = 1; j <= word2.size(); j++) {
                if (word1[i - 1] == word2[j - 1]) {
                    dp[i][j] = dp[i - 1][j - 1];
                } else {
                    dp[i][j] = min(dp[i - 1][j] + 1, dp[i][j - 1] + 1);
                }
            }
        }
        return dp[word1.size()][word2.size()];
    }
};

  • 时间复杂度: O(n * m)
  • 空间复杂度: O(n * m)

#动态规划二

本题和动态规划:1143.最长公共子序列 (opens new window)基本相同,只要求出两个字符串的最长公共子序列长度即可,那么除了最长公共子序列之外的字符都是必须删除的,最后用两个字符串的总长度减去两个最长公共子序列的长度就是删除的最少步数。

代码如下:

class Solution {
public:
    int minDistance(string word1, string word2) {
        vector<vector<int>> dp(word1.size()+1, vector<int>(word2.size()+1, 0));
        for (int i=1; i<=word1.size(); i++){
            for (int j=1; j<=word2.size(); j++){
                if (word1[i-1] == word2[j-1]) dp[i][j] = dp[i-1][j-1] + 1;
                else dp[i][j] = max(dp[i-1][j], dp[i][j-1]);
            }
        }
        return word1.size()+word2.size()-dp[word1.size()][word2.size()]*2;
    }
};

  • 时间复杂度: O(n * m)
  • 空间复杂度: O(n * m)

 

72. 编辑距离

力扣题目链接(opens new window)

给你两个单词 word1 和 word2,请你计算出将 word1 转换成 word2 所使用的最少操作数 。

你可以对一个单词进行如下三种操作:

  • 插入一个字符

  • 删除一个字符

  • 替换一个字符

  • 示例 1:

  • 输入:word1 = "horse", word2 = "ros"

  • 输出:3

  • 解释: horse -> rorse (将 'h' 替换为 'r') rorse -> rose (删除 'r') rose -> ros (删除 'e')

  • 示例 2:

  • 输入:word1 = "intention", word2 = "execution"

  • 输出:5

  • 解释: intention -> inention (删除 't') inention -> enention (将 'i' 替换为 'e') enention -> exention (将 'n' 替换为 'x') exention -> exection (将 'n' 替换为 'c') exection -> execution (插入 'u')

提示:

  • 0 <= word1.length, word2.length <= 500
  • word1 和 word2 由小写英文字母组成

#思路

编辑距离终于来了,这道题目如果大家没有了解动态规划的话,会感觉超级复杂。

编辑距离是用动规来解决的经典题目,这道题目看上去好像很复杂,但用动规可以很巧妙的算出最少编辑距离。

接下来我依然使用动规五部曲,对本题做一个详细的分析:

#1. 确定dp数组(dp table)以及下标的含义

dp[i][j] 表示以下标i-1为结尾的字符串word1,和以下标j-1为结尾的字符串word2,最近编辑距离为dp[i][j]

有同学问了,为啥要表示下标i-1为结尾的字符串呢,为啥不表示下标i为结尾的字符串呢?

为什么这么定义我在 718. 最长重复子数组 (opens new window)中做了详细的讲解。

其实用i来表示也可以! 用i-1就是为了方便后面dp数组初始化的。

#2. 确定递推公式

在确定递推公式的时候,首先要考虑清楚编辑的几种操作,整理如下:

if (word1[i - 1] == word2[j - 1])
    不操作
if (word1[i - 1] != word2[j - 1])
    增
    删
    换

也就是如上4种情况。

if (word1[i - 1] == word2[j - 1]) 那么说明不用任何编辑,dp[i][j] 就应该是 dp[i - 1][j - 1],即dp[i][j] = dp[i - 1][j - 1];

此时可能有同学有点不明白,为啥要即dp[i][j] = dp[i - 1][j - 1]呢?

那么就在回顾上面讲过的dp[i][j]的定义,word1[i - 1] 与 word2[j - 1]相等了,那么就不用编辑了,以下标i-2为结尾的字符串word1和以下标j-2为结尾的字符串word2的最近编辑距离dp[i - 1][j - 1]就是 dp[i][j]了。

在下面的讲解中,如果哪里看不懂,就回想一下dp[i][j]的定义,就明白了。

在整个动规的过程中,最为关键就是正确理解dp[i][j]的定义!

if (word1[i - 1] != word2[j - 1]),此时就需要编辑了,如何编辑呢?

  • 操作一:word1删除一个元素,那么就是以下标i - 2为结尾的word1 与 j-1为结尾的word2的最近编辑距离 再加上一个操作。

即 dp[i][j] = dp[i - 1][j] + 1;

  • 操作二:word2删除一个元素,那么就是以下标i - 1为结尾的word1 与 j-2为结尾的word2的最近编辑距离 再加上一个操作。

即 dp[i][j] = dp[i][j - 1] + 1;

这里有同学发现了,怎么都是删除元素,添加元素去哪了。

word2添加一个元素,相当于word1删除一个元素,例如 word1 = "ad" ,word2 = "a"word1删除元素'd' 和 word2添加一个元素'd',变成word1="a", word2="ad", 最终的操作数是一样! dp数组如下图所示意的:

            a                         a     d
   +-----+-----+             +-----+-----+-----+
   |  0  |  1  |             |  0  |  1  |  2  |
   +-----+-----+   ===>      +-----+-----+-----+
 a |  1  |  0  |           a |  1  |  0  |  1  |
   +-----+-----+             +-----+-----+-----+
 d |  2  |  1  |
   +-----+-----+

操作三:替换元素,word1替换word1[i - 1],使其与word2[j - 1]相同,此时不用增删加元素。

可以回顾一下,if (word1[i - 1] == word2[j - 1])的时候我们的操作 是 dp[i][j] = dp[i - 1][j - 1] 对吧。

那么只需要一次替换的操作,就可以让 word1[i - 1] 和 word2[j - 1] 相同。

所以 dp[i][j] = dp[i - 1][j - 1] + 1;

综上,当 if (word1[i - 1] != word2[j - 1]) 时取最小的,即:dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;

递归公式代码如下:

if (word1[i - 1] == word2[j - 1]) {
    dp[i][j] = dp[i - 1][j - 1];
}
else {
    dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;
}

#3. dp数组如何初始化

再回顾一下dp[i][j]的定义:

dp[i][j] 表示以下标i-1为结尾的字符串word1,和以下标j-1为结尾的字符串word2,最近编辑距离为dp[i][j]

那么dp[i][0] 和 dp[0][j] 表示什么呢?

dp[i][0] :以下标i-1为结尾的字符串word1,和空字符串word2,最近编辑距离为dp[i][0]。

那么dp[i][0]就应该是i,对word1里的元素全部做删除操作,即:dp[i][0] = i;

同理dp[0][j] = j;

所以C++代码如下:

for (int i = 0; i <= word1.size(); i++) dp[i][0] = i;
for (int j = 0; j <= word2.size(); j++) dp[0][j] = j;

#4. 确定遍历顺序

从如下四个递推公式:

  • dp[i][j] = dp[i - 1][j - 1]
  • dp[i][j] = dp[i - 1][j - 1] + 1
  • dp[i][j] = dp[i][j - 1] + 1
  • dp[i][j] = dp[i - 1][j] + 1

可以看出dp[i][j]是依赖左方,上方和左上方元素的,如图:

72.编辑距离

所以在dp矩阵中一定是从左到右从上到下去遍历。

代码如下:

for (int i = 1; i <= word1.size(); i++) {
    for (int j = 1; j <= word2.size(); j++) {
        if (word1[i - 1] == word2[j - 1]) {
            dp[i][j] = dp[i - 1][j - 1];
        }
        else {
            dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;
        }
    }
}

#5. 举例推导dp数组

以示例1为例,输入:word1 = "horse", word2 = "ros"为例,dp矩阵状态图如下:

72.编辑距离1

以上动规五部分析完毕,C++代码如下:

class Solution {
public:
    int minDistance(string word1, string word2) {
        vector<vector<int>> dp(word1.size() + 1, vector<int>(word2.size() + 1, 0));
        for (int i = 0; i <= word1.size(); i++) dp[i][0] = i;
        for (int j = 0; j <= word2.size(); j++) dp[0][j] = j;
        for (int i = 1; i <= word1.size(); i++) {
            for (int j = 1; j <= word2.size(); j++) {
                if (word1[i - 1] == word2[j - 1]) {
                    dp[i][j] = dp[i - 1][j - 1];
                }
                else {
                    dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;
                }
            }
        }
        return dp[word1.size()][word2.size()];
    }
};
  • 时间复杂度: O(n * m)
  • 空间复杂度: O(n * m)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/404121.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

开发技术-Java 获取集合中元素下标并移动至指定位置

1. 说明 某些业务需要特定的元素在列表的最后或者指定位置展示。 2. 代码 import lombok.AllArgsConstructor; import lombok.Data;import java.util.*; import java.util.stream.Collectors; import java.util.stream.IntStream;Data AllArgsConstructor class Student {St…

智能图书馆开源项目

结尾有项目链接 技术栈介绍 ☃️前端主要技术栈 技术作用版本Vue提供前端交互2.6.14Vue-Router路由式编程导航3.5.1Element-UI模块组件库&#xff0c;绘制界面2.4.5Axios发送ajax请求给后端请求数据1.2.1core-js兼容性更强&#xff0c;浏览器适配3.8.3swiper轮播图插件&…

【漏洞复现】大华智能物联ICC综合管理平台文件读取漏洞

Nx01 产品简介 大华智能物联ICC综合管理平台是一个集成了多种智能物联应用服务能力的平台。该平台提供了一系列的基础能力&#xff0c;如中台基础能力、各智能物联应用服务能力以及周边生态支持。 Nx02 漏洞描述 大华智能物联ICC综合管理平台存在文件读取漏洞&#xff0c;攻击…

六、回归与聚类算法 - 欠拟合和过拟合

目录 1、定义 2、原因及解决方法 2.1 正则化 线性回归欠拟合与过拟合线性回归的改进 - 岭回归分类算法&#xff1a;逻辑回归模型保存与加载无监督学习&#xff1a;K-means算法 1、定义 2、原因及解决方法 2.1 正则化

【Unity3D】ASE制作天空盒

找到官方shader并分析 下载对应资源包找到\DefaultResourcesExtra\Skybox-Cubed.shader找到\CGIncludes\UnityCG.cginc观察变量, 观察tag, 观察代码 需要注意的内容 ASE要处理的内容 核心修改 添加一个Custom Expression节点 code内容为: return DecodeHDR(In0, In1);outp…

Flashbit空投

空投要点 明牌空投交互简单&#xff0c;仅需3步&#xff0c;零gas费要求加密钱包在eth链有过交易需要有x和discord账号 空投简介 是一个社区驱动的项目&#xff0c;专门针对Blast生态&#xff0c;项目方提出了空投计划&#xff0c;参与过该生态其他项目空投的都清楚&#xf…

探索什么是模糊测试 Fuzzing Test

什么是 "模糊测试"&#xff1f; Fuzzing 是一种发现软件缺陷的方法&#xff0c;它通过向程序提供随机输入来寻找导致程序崩溃的测试场景&#xff08;原理有点类似Monkey Test&#xff09;。可以帮助你快速了解程序整体的健壮性&#xff0c;并帮助你发现和修复关键的缺…

【Python常用包】pathlib

目录 简介Pathlib 库实现Path 创建路径对象检查路径类型创建和删除路径&#xff08;目录与文件&#xff09;读写文件路径匹配路径拼接和解析路径属性路径迭代和列出目录内容 小结 简介 Pathlib 是一个用于处理文件路径的 Python 库&#xff0c;提供了许多实用的函数和方法来处…

windows安装编译的python包

有时windows无法直接通过网络安装python包&#xff0c;需要从一个地方先下载好&#xff0c;再去安装&#xff0c;下载的一些编译好的python包&#xff0c;安装时发现提示“is not a supported wheel on this platform”&#xff0c;那可能就是下载编译好的版本不对。 可以通过…

代码随想录第二十四天 39.组合总和 40.组合总和II 131.分割回文串

LeetCode 39 组合总和 题目描述 给你一个 无重复元素 的整数数组 candidates 和一个目标整数 target &#xff0c;找出 candidates 中可以使数字和为目标数 target 的 所有 不同组合 &#xff0c;并以列表形式返回。你可以按 任意顺序 返回这些组合。 candidates 中的 同一个…

电表(3)EC600N 4G模块通过mqtt向服务器发送数据

工具 1、ec600 2、stm32f030c8 3、keil5 4、腾讯云服务器&#xff08;ubutu20.04&#xff09; mqtt服务器 sudo apt install mosquitto mosquitto-clients sudo systemctl start mosquitto sudo vim /etc/mosquitto/mosquitto.conf sudo systemctl status mosquittolistene…

Aspose.Words For JAVA 动态制作多维度表格(涵2024最新无水印包)

全网最全Aspose.Words For JAVA 高级使用教程: CSDNhttps://blog.csdn.net/LiHaoHang6/article/details/133989664?spm1001.2014.3001.5501 运行截图&#xff1a; 所谓多维度表格通常包含多个维度, 每个维度都代表一种数据属性,多维度表格可以用于数据分析&#xff0c;通过不…

ArcgisForJS如何使用ArcGIS Server发布的切片地图服务?

文章目录 0.引言1.准备海量地理数据2.ArcGIS Server发布切片地图服务3.ArcgisForJS使用ArcGIS Server发布的切片地图服务 0.引言 ArcGIS Server是一个由Esri开发的地理信息系统&#xff08;GIS&#xff09;服务器软件&#xff0c;它提供了许多功能&#xff0c;包括发布切片地图…

Python实战:统计字符串中的英文字母、空格、数字及其他字符出现的个数

Python实战&#xff1a;统计字符串中的英文字母、空格、数字及其他字符出现的个数 &#x1f308; 个人主页&#xff1a;高斯小哥 &#x1f525; 高质量专栏&#xff1a;Matplotlib之旅&#xff1a;零基础精通数据可视化、Python基础【高质量合集】、PyTorch零基础入门教程 &…

Servlet使用过程中常见问题总结

&#x1f495;"Echo"&#x1f495; 作者&#xff1a;Mylvzi 文章主要内容&#xff1a;Servlet使用过程中常见问题总结 前言:笔者在学习Servlet的过程中遇到了很多问题,这里总结一下 1.乱码问题 如果我们在响应报文中传输中文"你好",那么在浏览器之中显示…

Redis中的AOF重写到底是怎么一回事

首先我们知道AOF和RDB都是Redis持久化的方法。RDB是Redis DB&#xff0c;一种二进制数据格式&#xff0c;这样就是相当于全量保存数据快照了。AOF则是保存命令&#xff0c;然后恢复的时候重放命令。 AOF随着时间推移&#xff0c;会越来越大&#xff0c;因为不断往里追加命令。…

Java基于SpringBoot+Vue的图书馆管理系统,附源码,数据库

博主介绍&#xff1a;✌程序员徐师兄、7年大厂程序员经历。全网粉丝12w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专栏推荐订阅&#x1f447;…

一款跳转警告HTML单页模板源码

一款跳转警告HTML单页模板,源码由HTMLCSSJS组成,记事本打开源码文件可以进行内容文字之类的修改&#xff0c;双击html文件可以本地运行效果&#xff0c;也可以上传到服务器里面&#xff0c;重定向这个界面 代码如下 <!DOCTYPE html> <html> <!--QQ沐编程 www.q…

HarmonyOS—使用预览器查看应用/服务效果

DevEco Studio为开发者提供了UI界面预览功能&#xff0c;可以查看应用/服务的UI界面效果&#xff0c;方便开发者随时调整界面UI布局。预览器支持布局代码的实时预览&#xff0c;只需要将开发的源代码进行保存&#xff0c;就可以通过预览器实时查看应用/服务运行效果&#xff0c…

统计图玫瑰图绘制方法

统计图玫瑰图绘制方法 常用的统计图有条形图、柱形图、折线图、曲线图、饼图、环形图、扇形图。 前几类图比较容易绘制&#xff0c;饼图环形图绘制较难。 还有一种玫瑰图的绘制也较难&#xff0c;今提供玫瑰图的绘制方法供参考。 本方法采用C语言的最基本功能&#xff1a; &am…