Java 中 synchronized 的优化操作:锁升级、锁消除、锁粗化

由 并发编程中常见的锁策略 总结可知,synchronized 具有以下几个特性:

  1. 开始时是乐观锁,如果锁冲突频繁,就转换为悲观锁。
  2. 开始是轻量级锁实现,如果锁被持有的时间较长,就转换成重量级锁。
  3. 实现轻量级锁时,大概率用自旋锁策略。
  4. 是一种不公平锁。
  5. 是一种可重入锁。
  6. 不是读写锁。

本文介绍synchronized的几种优化操作,包括锁升级、锁消除和锁粗化。

一、锁升级

JVM 将 synchronized 锁分为无锁、偏向锁、轻量级锁、重量级锁这四种状态。在加锁过程中,会根据实际情况,依次进行升级。(**目前主流的 JVM 的实现,只能锁升级,不能锁降级!**不是无法实现,只不过可能是因为存在一些代价,使得这样做的收益和代价不成比例,因此就没有实现。)

整体的加锁过程(锁升级过程):刚开始加锁,是偏向锁状态;遇到锁竞争后,升级成自旋锁(轻量级锁);当竞争更激烈时,就会变成重量级锁(交给内核阻塞等待)。

1、偏向锁(Biased Locking)

第一个尝试加锁的线程优先进入偏向锁状态。偏向锁是Java虚拟机(JVM)中用于提高线程同步性能的一种优化技术。在多线程环境中,对共享资源进行同步操作,需要使用锁(synchronized)来保证线程的互斥访问。传统的锁机制存在竞争和上下文切换的开销,对性能会有一定的影响。而偏向锁则是为了减少无竞争情况下的锁操作开销而引入的。

偏向锁不是真的“加锁”,只是先让线程针对锁对象有个标记,记录某个锁属于哪个线程。

它的基本思想是,当一个线程获取锁并访问同步代码块时,如果没有竞争,那么下次该线程再次进入同步块时,无需再次获取锁。这是因为在无竞争的情况下,假设一个线程反复访问同步代码块,无需每次都去竞争锁,只需判断锁是否处于偏向状态;如果是,那么直接进入同步代码块即可。

通俗来说就是,如果后续没有其他线程再来竞争该锁,那么就不用真的加锁了,从而避免了加锁解锁的开销。 但一旦还有其他线程来尝试竞争这个锁,偏向锁就立即升级成真的锁(轻量级锁),此时别的线程就只能等待了。这样做既保证了效率,也保证了线程安全。

如何判定有没有别的线程来竞争该锁?

注意,偏向锁是synchronized内部做的工作。synchronized会针对某个对象进行加锁,这个所谓的“偏向锁”正是在这个对象里头做一个标记。

由于一开始已经在锁对象中记录了当前锁属于哪个线程,因此很容易识别当前申请锁的线程是否是一开始就记录了的线程。

如果另一个线程正在尝试对同一个对象进行加锁,也会先尝试做标记,但结果却发现已经有标记了。于是JVM就会通知先来的线程,让它赶快把锁升级一下。

偏向锁本质上是“延迟加锁”,即能不加锁就不加锁,尽量避免不必要的加锁开销;但是该做的标记还是得做的,否则就无法区分何时需要真正加锁。

举个栗子理解偏向锁

假设男主是一个锁,女主是一个线程。如果只有女主和男主暧昧(即只有这一个线程来使用这个锁),那么即使男主和女主不领证结婚(避免了高成本操作),也可以一直生活下去。

但是如果此时有女配出现,也尝试竞争男主,想和男主搞暧昧,那么此时女主就必须当机立断,不管领证结婚这个操作成本多高,也势必要把这个动作完成(即真正加锁),让女配死心。

所以说,偏向锁 = 搞暧昧~~

2、自旋锁

**什么是自旋锁?**在锁策略的文章中提到:

自旋锁是一种典型的轻量级锁的实现方式,它通常是纯用户态的,不需要经过内核态。按之前的方式,线程在抢锁失败后即进入阻塞状态,放弃 CPU,需要过很久才能再次被调度。但实际上,在大部分情况下虽然当前抢锁失败,但过不了很久锁就会被释放,没必要就放弃 CPU。这个时候就可以使用自旋锁来处理这样的问题。

自旋锁是一种忙等待锁的机制。当一个线程需要获取自旋锁时,它会反复地检查锁是否可用,而不是立即被阻塞。如果获取锁失败(锁已经被其他线程占用),当前线程会立即再尝试获取锁,不断自旋(空转)等待锁的释放,直到获取到锁为止。第一次获取锁失败,第二次的尝试会在极短的时间内到来。这样能保证一旦锁被其他线程释放,当前线程能第一时间获取到锁。

优点:没有放弃 CPU,不涉及线程阻塞和调度。一旦锁被释放就能第一时间获取到锁。
缺点:如果锁被其他线程持有的时间比较久,那么就会持续的消耗 CPU 资源(忙等),而挂起等待的时候是不消耗 CPU 的。

自旋锁适用于保护临界区较小、锁占用时间短的情况,因为自旋会消耗CPU资源。自旋锁通常使用原子操作或特殊的硬件指令来实现。

随着其他线程进入锁竞争,偏向锁状态会被消除,进入轻量级锁状态,即自适应的自旋锁。

此处的轻量级锁是通过 CAS 来实现。通过 CAS 检查并更新一块内存 (比如比较 null 与该线程引用是否相等),如果更新成功,则认为加锁成功;如果更新失败,则认为锁被占用,继续自旋式的等待,期间并不放弃 CPU 资源。

(见 详解CAS算法)

CAS算法实现自旋锁的原理

由于自旋操作是一直让 CPU 空转,比较浪费 CPU 资源,因此此处的自旋不会一直持续进行,而是达到一定的时间或重试次数就不再自旋了。这也就是所谓的 “自适应”。

3、重量级锁

**什么是重量级锁 ?**在锁策略的文章中提到:

简单来说,轻量级锁是加锁解锁的过程更快更高效的锁策略,而重量级锁是加锁解锁的过程更慢更低效的锁策略。重量级锁中加锁机制重度依赖 OS 提供的 mutex(互斥量)。

  • 大量的内核态用户态切换。
  • 很容易引发线程的调度。

这两个操作的成本都比较高,而且一旦涉及到用户态和内核态的切换,效率就低了。

如果竞争进一步激烈,自旋不能快速获取到锁状态。就会膨胀为重量级锁。

自旋锁虽然能最快获取到锁,但是要消耗大量 CPU(因为自旋的时候CPU是快速空转的)。如果当前锁竞争非常激烈,比如 50 个线程竞争一个锁,1 个争上,另外 49 个等待。这么多线程都在自旋空转,CPU的消耗就非常大。既然如此,就更改锁策略,升级成重量级锁,让其它的线程都在内核里进行阻塞等待(这意味着线程要暂时放弃 CPU 资源,由内核进行后续调度)。

(PS:目前的主流操作系统如 windows,Linux,调度的开销都是很大的。系统不承诺能在 xx 时间内一定能完成指定的调度,极端情况下调度的开销可能非常大。

但还存在另外一种实时操作系统(例如 vxworks),它能够以更低的成本完成任务调度,但牺牲了更多的其他功能。在如火箭发射这种对时间精度比较高的特殊领域就会用到。)

如果竞争进一步激烈,自旋不能快速获取到锁状态。就会膨胀为重量级锁。

此处的重量级锁就是指内核提供的 mutex 。

  1. 某线程执行加锁操作,先进入内核态。
  2. 在内核态判定当前锁是否已经被别的线程占用 。
  3. 如果该锁没有占用,则加锁成功,并切换回用户态。
  4. 如果该锁被占用,则加锁失败。此时线程进入锁的等待队列并挂起,等待被操作系统唤醒。
  5. 经历了一系列的“沧海桑田”,这个锁终于被其他线程释放了,此时操作系统也想起了这个被挂起的线程,于是唤醒这个线程,并让它尝试重新获取锁。

二、锁消除

锁消除也是“非必要,不加锁”的一种体现。与锁升级不同,锁升级是程序在运行阶段 JVM 做出的优化手段。而锁消除是在程序编译阶段的优化手段。编译器和 JVM 会检测当前代码是否是多线程执行或是否有必要加锁。如果无必要,但又把锁给写了,那么在编译的过程中就会自动把锁去掉。

有些应用程序代码中可能会用到没有必要用到的 synchronized。例如 StringBuffer 就是线程安全的,它的每一个关键方法都加了synchronized关键字:

StringBuffer的部分源码

但这里就有一个问题:如果是在单线程中使用StringBuffer,是不涉及线程安全问题的。这个时候其实就没必要加锁。那么这时编译器就会出手,发现synchronized是没必要加的,就会在编译阶段把synchronized去掉,相当于加锁操作没有真正被编译。

StringBuffer sb = new StringBuffer();
sb.append("a");
sb.append("b");
sb.append("c");
sb.append("d");

此时,每个 append 的调用都会涉及加锁和解锁。但如果只是在单线程中执行这段代码,那么其中的这些加锁解锁操作是没有必要的,白白浪费了一些资源开销。

锁消除整体来说是一个比较保守的优化手段,毕竟编译器肯定得保证消除的操作是靠谱的。所以只有十拿九稳的时候才会实施锁消除,否则仍然会上锁,这时就会交给其它的操作策略来对锁进行优化(比如上面的锁升级)。

三、锁粗化

锁的粒度指的是 synchronized 代码块中包含代码的多少。代码越多,粒度越大;代码越少,粒度越小。

一般我们在写代码时,多数情况下是希望锁的粒度更小一点。(锁的粒度小就意味着串行执行的代码更少,并发执行的代码更多)。如果某个场景需要频繁地加锁解锁,此时编译器就可能把这个操作优化成个粒度更粗的锁,即锁的粗化。

实际开发过程中使用细粒度锁,是期望释放锁的时候其他线程能使用锁。但是实际中可能并没有其他线程来抢占这个锁。这种情况 JVM 就会自动把锁粗化,避免频繁申请释放锁造成不必要的开销。

举个栗子理解锁粗化

上班时要向领导汇报工作。你的领导给你安排了三个工作:A、B、C。
汇报方式有:

  1. 先打个电话,汇报工作 A 的进展,挂了电话;再打个电话,汇报工作 B 的进展,挂了电话;再打个电话,汇报工作C的进展,挂了电话。(你给领导打电话,领导接你的电话,领导就干不了别的;别人要给领导打电话,就只能阻塞等待。每次锁竞争都可能引入一定的等待开销,此时整体的效率可能反而更低。)
  2. 打个电话,一口气汇报 工作 A,工作B,工作 C,挂了电话。

显然第二种方式是更加高效的。

可见,synchronized 的策略是比较复杂的,它是一个很“智能”的锁。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/40097.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Raft算法之日志复制

Raft算法之日志复制 一、日志复制大致流程 在Leader选举过程中,集群最终会选举出一个Leader节点,而集群中剩余的其他节点将会成为Follower节点。Leader节点除了向Follower节点发送心跳消息,还会处理客户端的请求,并将客户端的更…

1.Docker概念

文章目录 Docker概念Docker容器与虚拟机的区别内核中的2个重要技术Linux Namespace的6大类型docker三个重要概念部署Dockeryum安装二进制安装 Docker 概念 docker是一个开源的应用容器引擎,基于go语言开发并遵循了apache2.0协议开源。docker可以让开发者打包他们的…

AtcoderABC243场

A - Shampoo A - Shampoo ] 题目大意 高桥家有三个人:高桥、他的父亲和他的母亲。每个人每晚都在浴室洗头发。他们按照顺序使用AA、BB和CC毫升的洗发水。 问,今天早上瓶子里有VV毫升的洗发水。在不重新装满的情况下,谁会第一个用完洗发水洗头…

K8s入门

K8s入门 目录 K8s入门namespacepoddeployment多版本扩缩容治愈能力滚动更新版本回退 serviceClusterIPNodePort ingress域名访问路径重写流量限制 存储抽象PV&PVCConfigMapSecret namespace kubectl get ns # 获取命名空间 kubectl create ns 名字 # 创建命名空间 ku…

学习babylon.js --- [3] 开启https

babylonjs提供WebVR功能,但是使用这个功能得用https,本文讲述如何使用自签名证书来开启https,基于第二篇文章中搭建的工程。 一 生成自签名证书 首先要安装openssl,这个去网上搜下就行了。安装完之后在终端下输入openssl回车可以…

【CNN记录】pytorch中BatchNorm2d

torch.nn.BatchNorm2d(num_features, eps1e-05, momentum0.1, affineTrue, track_running_statsTrue, deviceNone, dtypeNone) 功能:对输入的四维数组进行批量标准化处理(归一化) 计算公式如下: 对于所有的batch中样本的同一个ch…

【Spring core学习四】Bean作用域和生命周期

目录 一、Bean的作用域 🌈1、被修改的Bean值现象 🌈2、 Bean 的 6 种作⽤域 🌈3、设置作用域 二、Spring的执行流程 三、Bean的生命周期 🌈1、Bean生命周期的过程 🌈2、演示生命周期 一、Bean的作用域 &…

大华相机接入web页面实现人脸识别

先看下效果&#xff0c;中间主视频流就是大华相机&#xff08;视频编码H.264&#xff09;&#xff0c;海康相机&#xff08;视屏编码H.265&#xff09; 前端接入视屏流代码 <!--视频流--><div id"col2"><div class"cell" style"flex: …

[GXYCTF2019]simple CPP

前言 三个加密区域&#xff0c;第一次是基本运算&#xff0c;八位叠加&#xff0c;z3方程 分析 第一轮加密&#xff0c;和Dst中模27异或 &#xff08;出题人对动调有很大意见呢&#xff09; 将输入的字符串按八位存入寄存器中&#xff0c;然后将寄存器内容转存到内存 第一次…

数仓-零基础小白到入土-学习路线

数仓-零基础小白到入土-学习路线 铺垫一下下讲在前面涉及基础技术栈&#xff1a;中级&#xff1a;全部掌握之后&#x1f446;&#xff1a;去刷面试题&#xff1a; 初级中级高级博主独家面试题&#xff1a;数仓名词&#xff1a;催更我戳戳个人主页&#xff1a;[up自己的网站](ht…

【电路原理学习笔记】第4章:能量与功率:4.5 稳压电源与电池

第4章&#xff1a;能量与功率 4.5 稳压电源与电池 电网采用交流电形式将电能从发电站传输给用户&#xff0c;这是因为交流电易于转换成适宜传输的高压和终端用户使用的低压。在远距离传输时&#xff0c;采用高电压传输的效率和效益要高得多。对于给定的功率&#xff0c;较高的…

基于linux下的高并发服务器开发(第一章)- 目录操作函数

09 / 目录操作函数 &#xff08;1&#xff09;int mkdir(const char* pathname,mode_t mode); #include <sys/stat.h> #include <sys/types.h>int mkdir(const char *pathname, mode_t mode); 作用&#xff1a;创建一个目录 参数&#xff1a; pat…

【OC总结- Block】

文章目录 前言2. Block2.1 Block的使用规范2.2 __block修饰符2.3 Block的类型2.4 Block的循环引用及解决循环引用的场景引入解决循环引用Block循环引用场景 2.5 Block的实现及其本质2.5.1 初始化部分2.5.2 调用部分2.5.3 捕获变量 Block本质2.6 Block捕获变量 和 对象2.7 Block…

基于 ChatGPT 的 helm 入门

1. 写在最前面 公司最近在推业务上云&#xff08;底层为 k8s 管理&#xff09;&#xff0c;平台侧为了简化业务侧部署的复杂度&#xff0c;基于 helm 、chart 等提供了一个发布平台。 发布平台的使用使业务侧在不了解 helm 、chart 等工具的时候&#xff0c;「只要点点」就可…

LCD—STM32液晶显示(1.显示器简介及LCD显示原理)(6000字详细介绍)

目录 显示器简介 液晶显示器 液晶 像素 液晶屏缺点 LED显示器 OLED显示器 显示器的基本参数 STM32板载液晶控制原理&#xff08;不带微控制器&#xff09; 液晶控制原理 控制信号线(不带液晶控制器) 液晶数据传输时序 显存 总结 3.2寸液晶屏介绍&#xff08;搭载…

IIS Express本地开发测试如何映射到外网访问?

1.IIS Express是什么 IIS Express是为开发人员优化的轻量级、自包含版本的IIS。它具有IIS 7及以上的所有核心功能&#xff0c;以及为简化网站开发而设计的附加功能。 IIS Express&#xff08;跟ASP.NET开发服务器一样&#xff09;可以快速地从硬盘上的某个文件夹上启动网站…

SylixOS下SSH和SFTP连接

简要 基于网络的连接&#xff08;telnet&#xff0c;ftp&#xff09;方便高效&#xff0c;但其是基于明文的通信&#xff0c;容易被窃取、篡改和攻击&#xff0c;存在网络安全问题&#xff0c;尤其在进行远程访问时&#xff0c;穿过复杂未知的公网环境非常危险&#xff0c;为此…

中信银行西安分行举办金融助力外贸企业“走出去“高端论坛

7月14日&#xff0c;中信银行西安分行联合中国出口信用保险公司陕西分公司、西安市工商联举办"智汇西安、信融全球"——金融助力外贸企业"走出去"高端论坛。该论坛紧跟“加快建设贸易强国”的战略指引&#xff0c;以创新金融服务助力外贸企业融入高水平对外…

C++-----vector

本期我们来学习C中的vector&#xff0c;因为有string的基础&#xff0c;所以我们会讲解的快一点 目录 vector介绍 vector常用接口 构造函数 sort 迭代器 size&#xff0c;max_size&#xff0c;capacity&#xff0c;empty reserve和resize front和back data insert和…

解决appium-doctor报opencv4nodejs cannot be found

一、下载cmake 在CMake官网下载&#xff1a;cmake-3.6.1-win64-x64.msi 二、安装cmake cmake安装过程 在安装时要选择勾选为所有用户添加CMake环境变量 三、检查cmake安装 重新管理员打开dos系统cmd命令提示符&#xff0c;输入cmake -version cmake -version四、安装opencv4no…