Sora横空出世!AI将如何撬动未来?

近日,OpenAI 发布首个视频生成“Sora”模型,该模型通过接收文字指令,即可生成60秒的短视频。

在这里插入图片描述

而在2022年末,同样是OpenAI发布的AI语言模型ChatGPT,简化了文本撰写、创意构思以及代码校验等任务。用户仅需输入一个指令,ChatGPT便能生成图片、文字或代码等多种形式的内容。

这一系列的进展不仅仅是技术上的突破,它们预示着一场全面的AI革命的到来,影响范围远超从前。AI技术的应用已经拓展到聊天机器人、绘图、音乐创作、代码生成、视频生成等领域,每一次迭代和升级都引起了全球的关注和热议。

在编程领域,AI的崛起,如ChatGPT和Github Copilot,正在改变开发者获取信息和编写代码的方式。在Andrej Karpathy的博客《Software 2.0》中,他探讨了人工智能如何改变软件开发方式:“Software 2.0代表着我们可以用大量的数据和算力来解决以前需要大量人力和成本来解决的复杂问题。” AI 编码助手则是上述的具体实现。

在这里插入图片描述

资料图片来源:Github

调查数据显示,AI编码工具不仅提高了整体生产力,还带来了技能提升的机会。75%的开发者表示在使用GitHub Copilot时感到更加充实,在具体的生产数据方面,Copilot能够完成高达46%的代码,帮助开发人员将编程速度提高了 55%。

大模型给已有的开发工作“降本增效”

未来的编码工作流程将呈现全新的面貌:AI 编码工具将可以大量生成短期的软件和测试解决方案,不再追求长期的可重复利用性,由于生产过程的高效自动化,未来的推理成本、推理延迟性都将大幅降低。另一方面,工程发展好坏并非在理论上有挑战,而是在工程实践中的持续优化和迭代,这主要体现在未来代码大模型将被提炼成中小型模型,从而实现在边缘设备运行的可能性。

在代码训练推理领域,实际上并不需要前后的历史知识和上下需要索引人文典故,可以预见的将来大模型会逐渐蒸馏成一个中小型模型,可能是70个亿的参数、10个亿参数或者100亿参数,这种规模就已经非常有效果了。

相对较小的模型让在边缘设备、个人电脑上的大模型运行成为可能。此外,硬件架构的升级让消费级硬件能够运行更大规模的模型,目前强大的Mac Pro等已经可以承载数百亿参数的模型。随着这种参数量化的发展,更多模型将能在边缘设备上运行,这是功能上的进步,并不涉及理论上的难点。这种发展在未来几年内将变得更加普遍。

同时**随着生成式 AI 的发展,编程语言之间的差异变得不再那么明显。随之带来的是编程语言的学习门槛降低。**目前学习一门新的编程语言,其中一个关键点在于掌握其生态系统,包括语法和库的使用。举个例子,区分成熟的 Java 工程师和专业的 Java 工程师的主要因素之一是对各种库的熟悉程度和使用直觉。

未来,生成式AI的存在可能极大地简化这一过程。例如,当需要进行 JSON 解析时,生成式 AI 可以自动推荐合适的库。这就像有一个助手在一旁,不仅帮助选择合适的工具,还可以解释不熟悉的代码片段。因此,学习新语言将变得更加直观和简单。

这种变化预示着未来编程的重点可能会从对工具的关注转移到提供端到端体验上,开发者可以更加专注于创意和解决方案的实现,而不是编码的具体细节。

面向未来:MoonBit——为AI原生应用打造的编程语言

正是在这样的背景下,MoonBit应运而生。MoonBit在2022年10月推出,此时恰逢ChatGPT刚刚问世。MoonBit平台的出现不仅仅作为一种编程语言,更是提供一个完整的开发工具链,包括IDE、编译器、构建系统、包管理器等。我们处在一个特殊的位置,有机会去重新构想整个编程语言工具链该如何与AI更好地协作,开启了编程与AI结合的新篇章。

在不断的探索中,我们的努力得到了学术界的认可。最近,MoonBit团队的研究论文「MoonBit: Explore the Design of an AI-Friendly Programming Language」已经荣幸地被LLM4Code 2024接收!

在这里插入图片描述

同时,我们在ai.moonbitlang.com上设计了一个简单的MoonBit AI demo,非常欢迎你来尝试!我们也非常期待你的反馈,可以随时通过我们的论坛/微信小助手/用户群等渠道进行反馈。

让我们看看下面的视频,更具体地了解使用MoonBit AI进行端到端开发的体验是什么样子:

从上面的视频可以看到,不同于ChatGPT,MoonBit AI可以实现从需求设定到代码实现,再到运行调试的无缝衔接,确保编程过程更加流畅高效。用户可以实时修改MoonBit AI生成的代码,获得即时反馈。同时,MoonBit AI重视用户体验,为大家提供一个更加便捷易用的用户界面。无论你是编程新手还是资深的开发者,都能轻松上手。

在文章接下来的部分,我们主要将讨论两个主要方面:

  1. MoonBit如何设计成一种出色的、对AI友好的编程语言
  2. 是什么驱动了MoonBit AI

MoonBit:平坦化设计,适配Transformer架构

MoonBit作为AI时代的开发平台,设计强调清晰和简单,特别强调在顶层(toplevel)和局部(local)定义之间的清晰区分。MoonBit还采用了结构化接口实现(structural interface implementation),在这种方式中,一个类型通过实现其方法来实现一个接口,因此消除了额外嵌套代码块的必要性。

现有的大模型基本都基于自回归的 Transformer 架构。这意味着随着上下文窗口增长,生成单个 token 的复杂度呈 n² 上升。也就是说,大模型的推理会越来越慢。一个没有嵌套的编程语言有着较好的可读性,同时也能够在各个层级(RAG,decoder correction,backtrack)做到 KV 缓存友好,实现更高的推理速度。

让我们一起来看一个例子:

在图1(a)中所示的例子中,一名程序员正在为类型Llama实现特性Agent中的方法think。他们发现类型Llama缺少在特性LLM中定义的generation方法。由于他们处于一个嵌套代码块中,需要回到顶层来为类型Llama实现特性LLM。然而,在大型语言模型(LLMs)的上下文中,修改几个函数之前的提示会导致相关KV缓存段的无效,这在图中以红色突出显示。经过这样的修改,所有这些函数都要重新评估,这不仅浪费了计算资源,更关键的是,延长了输出的延迟时间。

相比之下,如图1(b)所示,MoonBit允许程序员和大型语言模型(LLMs)线性地开发他们的程序,无需频繁地来回跳转。通过结构化接口,实现接口的函数不限于特定的代码块。这允许几乎线性地生成接口及其各自的实现,从而有效地最大化利用KV缓存。

在这里插入图片描述

图1

MoonBit AI:快速实时的语义补全

MoonBit AI由两种定制的采样算法驱动:局部采样和全局采样。局部采样使用AI生成的代码进行实时调整,以确保代码遵循语法规范,而全局采样进一步验证代码的语义正确性。随着大型语言模型(LLM)生成新的token,MoonBit采样器将从局部和全局收集并利用信息,以确保每个生成的token不仅在语法上正确,而且没有明显的类型错误。这种方法提供了更可靠、更准确的代码生成,减少了后续调试和错误纠正的需要。

例如,当LLM编写程序时,它可能会生成一个不好的token。我们维护一个推测缓冲区来存储最后一个token。一旦token由LLM完成,我们将检查token是否有效。如果有效,我们接受它并将其提交给用户,如果不有效,我们就回溯并重试。为了防止LLM重复同样的错误,我们将告知LLM可能的继续操作,以做出更好的选择。

在这里插入图片描述

我们的实验显示,MoonBit采样器在编译率方面取得了显著提高,性能损失仅约3%。

在这里插入图片描述

当然,这只是个开始!

我们目前正在搭建一个包管理器,这对于收集额外数据以微调模型至关重要。未来,我们将持续增强MoonBit AI能力,包括加入代码辅助、审查、问答界面、测试生成和验证机制等功能。同时,我们正计划开发一个快速解释器,在运行时提供实时反馈。这将进一步提高AI生成代码的可靠性。

欢迎持续关注MoonBit AI的进展!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/400921.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

1.30数据包络法

数据包络分析法(Data Envelopment Analysis,DEA)是一种非参数的效率评价方法,用于衡量相对效率和评估多个决策单元(DMU)的绩效。 在数据包络分析中,每个决策单元都是一个输入和输出数据向量的组…

[Angular 基础] - service 服务

[Angular 基础] - service 服务 之前的笔记就列举三个好了……没想到 Angular 东西这么多(ー ー;)……全加感觉越来越凑字数了 [Angular 基础] - 视图封装 & 局部引用 & 父子组件中内容传递 [Angular 基础] - 生命周期函数 [Angular 基础] - 自…

Android T 远程动画显示流程其二——动画的添加流程(更新中)

前言 接着上篇文章分析 Android T 远程动画显示流程其一 切入点——处理应用的显示过渡 下面,我们以从桌面点击一个应用启动的场景来分析远程动画的流程,窗口添加的流程见Android T WMS窗口相关流程 这里我们从AppTransitionController.handleAppTran…

量子加密机的工作原理是什么

量子加密机,作为现代加密技术的一大飞跃,正逐渐成为信息安全领域的研究热点。与传统的加密方法相比,量子加密技术以其独特的优势,为信息安全提供了更为坚实的保障。 量子加密的核心在于利用量子力学的特性,尤其是量子纠…

sizeof()的易错点

你也可以传入一个变量的名字(而不只是类型)给 sizeof(),但在一些情况下,可能得不到你要的结果,所以要小心使用。例如,看看下面的代码片段: 在第一行,我们为 10 个整数的数组声明了空…

LInux-信号1

文章目录 前言一、信号是什么?二、学习步骤使用kill -l命令查看信号列表可以看到有那么多信号,那么进程是如何识别这么多信号的呢? 使用kill命令终止进程信号的捕捉kill函数raise函数abort函数 Core dump如何查看自己的核心转储功能是否被打开…

C++运算符重载、迭代器、继承、派生类的构造与析构、重载、隐藏和覆盖

运算符重载 普通的C运算符重载成员方法基本都知道&#xff0c;如果没有定义成员方法&#xff0c;那么编译器会优先寻找全局重载运算符看看是否匹配。这里给出了一个使用友元函数和全局重载运算符来实现整数与复数类对象的相加运算。 #include <iostream>class Complex …

Flink双流(join)

一、介绍 Join大体分类只有两种&#xff1a;Window Join和Interval Join Window Join有可以根据Window的类型细分出3种&#xff1a;Tumbling(滚动) Window Join、Sliding(滑动) Window Join、Session(会话) Widnow Join。 &#x1f338;Window 类型的join都是利用window的机制…

蜂鸣器实验

1.有源蜂鸣器简介 蜂鸣器常用于计算机、打印机、报警器、电子玩具等电子产品中&#xff0c;常用的蜂鸣器有两种&#xff1a; 有源蜂鸣器和无源蜂鸣器&#xff0c;这里的有“源”不是电源&#xff0c;而是震荡源&#xff0c;有源蜂鸣器内部带有震荡 源&#xff0c;所以有源蜂…

OD(8)之Mermaid流程图(flowcharts)使用详解

OD(8)之Mermaid流程图(flowcharts)使用详解 Author: Once Day Date: 2024年2月20日 漫漫长路才刚刚开始… 全系列文章可参考专栏: Linux实践记录_Once_day的博客-CSDN博客 参考文章: 关于 Mermaid | Mermaid 中文网 (nodejs.cn)Mermaid | Diagramming and charting tool‍…

Maven 私服 Nexus3

一、Maven和Nexus3 简介 Maven是一个采用纯Java编写的开源项目管理工具&#xff0c;采用一种被称之为Project Object Model(POM)概念来管理项目&#xff0c;所有的项目配置信息都被定义在一个叫做POM.xml的文件中, 通过该文件Maven可以管理项目的整个生命周期&#xff0c;包括…

maven 打包命令

Maven是基于项目对象模型(POM project object model)&#xff0c;可以通过一小段描述信息&#xff08;配置&#xff09;来管理项目的构建&#xff0c;报告和文档的软件项目管理工具。 Maven的核心功能便是合理叙述项目间的依赖关系&#xff0c;通俗点讲&#xff0c;就是通过po…

06 分频器设计

分频器简介 实现分频一般有两种方法&#xff0c;一种方法是直接使用 PLL 进行分频&#xff0c;比如在 FPGA 或者 ASIC 设计中&#xff0c;都可以直接使用 PLL 进行分频。但是这种分频有时候受限于 PLL 本身的特性&#xff0c;无法得到频率很低的时钟信号&#xff0c;比如输入 …

Predis Multi-Zone

A Data Flow Framework with High Throughput and Low Latency for Permissioned Blockchains 联盟链的吞吐瓶颈由共识层和网络层的数据分发过程共同决定。 Predis 协议利用了共识节点的空闲带宽&#xff0c;提前分发区块中的内容即bundle&#xff0c;减少了共识区块中的内容&…

2024龙年特别篇 -- 魔法指针 之 assert断言 传址调用 传值调用

你是否为 assert断言&#xff0c;传址调用&#xff0c;传值调用而进一步加深印象&#xff0c;接下来就让白子寰同学为你详细讲解&#xff01;&#xff01;&#xff01; 目录 assert断言 概念 assert介绍 #define NDEBUG的使用 注意事项 传值调用 VS 传址调用 传值调用…

C语言推荐书籍

本书详细讲解了C语言的基本概念和编程技巧。全书共17章。第1章、第2章介绍了C语言编程的预备知识。第3章&#xff5e;第15章详细讲解了C语言的相关知识&#xff0c;包括数据类型、格式化输入/输出、运算符、表达式、语句、循环、字符输入和输出、函数、数组和指针、字符和字符串…

CS_Smb_Beacon上线不出网机器

当我们想上线不出网的机器的时候&#xff0c;我们可以通过上传工具来实现&#xff0c;但是有没有不用上传工具的方法呢&#xff1f;&#xff1f;&#xff1f; 有&#xff01;&#xff01;&#xff01; 而且cs会自带&#xff01;&#xff01;&#xff01; 1.基础的网络拓扑 以下…

MYSQL数据库详解

一、数据库的基本概念 数据&#xff08;data&#xff09;&#xff1a;指对客观事物进行描述并可以鉴别的符号。这些符号是可识别的&#xff0c;抽象的。 比如数字、图片、音频等。 数据库管理系统&#xff08;DBMS&#xff09;&#xff1a;数据库极其管理它的软件组成。 数据库…

RocketMQ-架构与设计

RocketMQ架构与设计 一、简介二、框架概述1.设计特点 三、架构图1.Producer2.Consumer3.NameServer4.BrokerServer 四、基本特性1.消息顺序性1.1 全局顺序1.2 分区顺序 2.消息回溯3.消息重投4.消息重试5.延迟队列&#xff08;定时消息&#xff09;6.重试队列7.死信队列8.消息语…

2.21C语言学习

Floyd算法原理 Floyd算法是一个经典的动态规划算法&#xff0c;它又被称为插点法。该算法名称以创始人之一、1978年图灵奖获得者、斯坦福大学计算机科学系教授罗伯特弗洛伊德命名。Floyd算法是一种利用动态规划的思想寻找给定的加权图中多源点之间最短路径的算法,算法目标是寻找…