Linux内核解读

来自鹅厂架构师 作者:aurelianliu

工作过程中遇到的调度、内存、文件、网络等可以参考。

1.os运行态

X86架构,用户态运行在ring3,内核态运行在ring0,两个特权等级。

(1)内核、一些特权指令,例如填充页表、切换进程环境等,一般在ring0进行。内核态包括了异常向量表(syscall、中断等)、内存管理、调度器、文件系统、网络、虚拟化、驱动等。

(2)在ring3,只能访问部分寄存器,做协程切换等。可以运行用户程序。用户态lib、服务等。

(3)用户态crash,重启app即可;系统是安全的。内核态crash,整机需要重启。

(4)通过页表做进程隔离,进程之间内存一般不可见(共享内存除外)。而内核态内存全局可见。

2.调度

调度器由调度类(例如cfs、rt、stop、deadline、idle等,都是调度类)与通用调度模块组成(主要在core.c)。调度完整运行,需要抢占、切换机制的支持,需要有调度的上下文进程/线程。

首选可以通过clone、fork、execv等创建进程。抢占包括设置抢占标志need_schded、执行抢占两部分。设置抢占标志一般由调度类支持,例如cfs分配的quota到期,设置抢占标志;更高优先级的进程到来,设置抢占标志。

执行抢占,分为用户态抢占和内核态抢占。一般只打开用户态抢占,只有实时性要求非常高的场景,考虑打开内核态抢占。用户态抢占是指:在用户态运行时,由syscall、中断、缺页异常等陷入内核,再返回用户态时(entry_64.S),会判断是否有need_sched抢占标志,如果有,则执行抢占,通过schedule()选择新进程执行。内核态抢占,则是在内核态运行时,触发异常后,执行抢占,例如中断、tick等到来可以执行抢占。

在schedule()完成进程上下文切换,进程A切换到进程B,进程A->schedule()->进程B,保存进程A的寄存器上下文,恢复进程B的寄存器上下文,从而完成切换。

调度类按照优先级,包括stop(主要用于核间通信等)、deadline、RT、cfs、idle等。

2.1 cfs

cfs完全公平调度器。

Vruntime。cfs根据虚拟时钟vruntime来决定进程执行顺序,完全公平是指进程运行的vruntime完全相同。vruntime是根据实际执行时间delta_exec、NICE_0_LOAD、task load计算得出:

vruntime = delta_exec * NICE_0_LOAD / load

或者:

(delta_exec * (NICE_0_LOAD * load->inv_weight)) >> WMULT_SHIFT

load有进程prio通过数组sched_prio_to_weight[]和sched_prio_to_wmult[]来计算。Nice值或者优先级越高,load值越大,同样物理执行时间,得到的vruntime值就越小,因此实际执行更久,但是从vruntime角度看,大家都是执行相同的虚拟时间,例如进程A prio为15和进程B prio为18,分配对应的weight值36和18,如果两个进程vruntime均执行1024ms,则对应的实际实际是delta_exec= (vruntime/ NICE_0_LOAD)load,进程A执行时间=(1024/1024)36=36ms,进程B实际执行时间(1024/1024)*18=18ms。

通过红黑树来管理进程vruntime,vruntime值越小,越靠近左侧,做左侧说明需要第一个执行,如果没有更高优先级抢占等排队。

Task一次实际执行时间,即slice。Task在cfs上对应一个调度实体se。当前队列所有进程执行一遍为一个周期period。每个进程获得的slice就是本se的load占比整体rq队列上所有进程load总和的份额,乘以period。

2.2 cfs运行机制

首选是唤醒进程。通过wake_up_process/wake_up_new_process等,唤醒一个进程,通常是资源准备就绪或者等待的锁被释放,然后唤醒睡眠的进程。

选核。当唤醒一个进程的时候,需要再进程cpu亲和性允许的范围内,选择最空闲或者内存亲和性最合适的cpu,然后添加到此cpu的运行队列rq上。

抢占。当前进程slice执行完毕后,时钟周期tick设置抢占标志,在合理的时机执行抢占。也可以进程主动schedule()让出cpu,或者拿锁等让出cpu。

切换。当前设置了抢占标志,在合适的抢占时机,或者进程主动让出了cpu时,需要选择下一个进程执行,通过schedule()完成切换。

2.3 cfs: select_task_rq_fair

进程唤醒时,需要选择合适的cpu。如果支持EAS,则会选择比较节能的cpu。没有打开EAS支持,则考虑cache亲和性和cpu空闲程度。如果符合cache亲和性要求,则优先选择共享cache的cpu(例如同一个sd_llc域内的),否则选择更空闲的cpu(此时可以选择不同的numa节点上的cpu,不在同一个sd_llc域)。

3.内存管理

内存管理包括虚拟内存和物理内存。64位地址空间0x0000,0000,0000,0000。

~0x0000, 7fff,ffff,f000为用户态空间地址,0xffff,8800,0000,0000~0xffff,ffff,ffff,ffff为内核态空间地址(除去部分空洞)。

用户态部分,有mmap、malloc(实际brk)、不同语言分配接口等分配虚拟内存。read、write等fs相关系统调用也可以直接访问页缓存。

内核部分,内存管理由slub子系统(支持小内存分配)和伙伴系统buddy(管理所有分配给内核使用的可见页)组成。功能包括了内存映射(map与缺页异常)、内存分配、内存回收、内存迁移等组成。

3.1物理内存类型与组织结构

系统启动的时候,在start_kernel对内存管理进行初始化,通过build_all_zonelists生成buddy结构。伙伴系统buddy结构包括了一个pcp list和free_area[],pcp list直接管理部分页,可以加速单页内存分配,free_area是主要管理结构,以order为索引,每一个数组成员包括了不同内存类型的list,例如unmovable/movable/reclaimable/cma等,均有一个list链表,管理本order size的页。

物理内存类型,可以减少内存碎片,内存类型一般以pageblock为一个单位(1024 page,4M),一个pageblock为一个类型。

相关视频推荐

2024,彻底搞懂计算机的底层原理,linux内核源码分析教程,六大模块全面分析(内存管理、进程管理、设备驱动、网络协议栈、文件系统、中断管理及基础)icon-default.png?t=N7T8https://www.bilibili.com/video/BV1GT4y1t7Hs/

Linux C/C++开发(后端/音视频/游戏/嵌入式/高性能网络/存储/基础架构/安全)

需要C/C++ Linux服务器架构师学习资料加qun812855908获取(资料包括C/C++,Linux,golang技术,Nginx,ZeroMQ,MySQL,Redis,fastdfs,MongoDB,ZK,流媒体,CDN,P2P,K8S,Docker,TCP/IP,协程,DPDK,ffmpeg等),免费分享

3.2 mmap/malloc与虚拟内存

mm_struct *mm, mm->mm_rb.rb_node,一颗红黑树管理用户态地址空间,已分配的虚拟地址通过vma结构管理,包含一段内存区域,例如:[100, 2000],根据vma对应的虚拟地址加入到红黑树;再次分配的时候,从红黑树找到合适gap(没有添加到树,还未分配)

匿名地址通过进程地址空间mm->get_unmapped_area分配,File虚拟地址通过fs,例如ext4: thp_get_unmapped_area分配,mmap_region:通常只分配虚拟地址,建立虚拟地址与file/anon的关系,实际访问时,缺页异常完成物理地址分配。

3.3缺页异常

4.fs

4.1 Fs架构

4.2 ext4 块组layout文件组织

区段extents根据内容分为索引节点 extent_idx ,内容叶子节点extent。

extent内容包含了起始的block地址和length,length占16个字节,因此对于4KB的block,每个extent能定位128M连续的寻址空间。

inode默认有4个extent,每个extent可以直接指向一段连续的block;如果这4个extent不能满足文件大小,则extent变成extent_idx索引节点 ,形成一个BTree。

4.3目录项结构

4.4文件:内存组织形式

地址空间:struct adress space:page->mapping

读写文件分两级:页缓存、磁盘页缓存。

通过基数树管理mapping->i_page。基数树索引:page->index = offset >> PAGE_SHIFT;page通过index加到树上;Index即为文件内偏移(不同的访问,index语义不同);磁盘(页缓存没有缓存或者数据不是updated);逻辑块地址:iblock:page->index <<(PAGE_SHIFT - BBITS);ext4通过extent树管理。

4.5 extent树:文件的磁盘组织结构

inode:对应一个文件,文件元数据管理结构。Extent树:EXT4_I(inode)->i_es_tree,区域树保存在ext4 磁盘inode info结构中,根据逻辑block号,把区域结构添加到区域树,区域结构:struct extent_status,包含了逻辑块号、物理块号、区域的块数,可能是索引块,也可能是叶子节点,通过区域树上的节点对应的物理block来存储文件数据。

文件系统包括写页缓存,落盘两部分。写页缓存对应file operations操作集,把数据copy到页缓存。落盘把数据回写磁盘,对应fs地址空间操作集。

5. 网络

5.1 Tcp/ip协议层次结构

网络协议栈分层,分为http应用层、会话层、tcp传输层、ip网络层、链路层。每一层协议,数据报文对应右边的组成。

5.2建立连接

建立连接

请求端(通常称为客户)发送一个SYN段指明客户打算连接的服务器的端口,以及初始序号(ISN,在这个例子中为1415531521)。这个SYN段为报文段1。

服务器发回包含服务器的初始序号的SYN报文段(报文段2)作为应答。同时,将确认序号设置为客户的ISN加1以对客户的SYN报文段进行确认。一个SYN将占用一个序号。

客户必须将确认序号设置为服务器的ISN加1以对服务器的SYN报文段进行确认(报文段3)。

这三个报文段完成连接的建立。这个过程也称为三次握手(three-way handshake)。

终止连接

终止一个连接要经过4次握手。这由TCP的半关闭(halfclose)造成的。

TCP连接是全双工(即数据在两个方向上能同时传递),因此每个方向必须单独地进行关闭。

原则就是当一方完成它的数据发送任务后就能发送一个FIN来终止这个方向连接。当一端收到一个FIN,它必须通知应用层另一端几经终止了那个方向的数据传送。发送FIN通常是应用层进行关闭的结果。

5.3概念

窗口分为滑动窗口和拥塞窗口。滑动窗口是接受数据端使用的窗口大小,用来告知发送端接收端的缓存大小,以此可以控制发送端发送数据的大小,从而达到流量控制的目的。tp->snd_wnd:发送窗口大小、tp->snd_una:执行已发送但未收到确认的第一个字节 序列号,实际为滑动窗口起始序列号(连续收到了,要向右滑动)tp->nxt:执行未发送但可发送的第一个字节序列号;tp->rcv_wnd:接受窗口大小、tp->rcv_nxt:期望从发送方发送的下一个序列号报文、rcv_wup:上一个窗口更新的rcv_nxt;数据的发送端是拥塞窗口,拥塞窗口不代表缓存,拥塞窗口指某一源端数据流在一个RTT内可以最多发送的数据包数。

RTT(Round Trip Time)

往返时延,也就是数据包从发出去到收到对应 ACK 的时间。RTT 是针对连接的,每一个连接都有各自独立的 RTT。

RTO(Retransmission Time Out)

重传超时。TCP协议,这种算法的基本要点是TCP监视每个连接的性能(即传输时延),由此每一个TCP连接推算出合适的RTO值,当连接时延性能变化时,TCP也能够相应地自动修改RTO的设定,以适应这种网络的变化。使用自适应算法(Adaptive Retransmission Algorithm)以适应互联网分组传输时延的变化。

5.4数据传输

发送方首先传送3个数据报文段(4~6)。下一个报文段(7)仅确认了前两个数据报文段(确认序号为2048而不是3073)。

报文段8中的窗口大小为3072,表明在TCP的接收缓存中还有1024个字节的数据等待被应用程序读取。

报文段11~16说明了通常使用的“隔一个报文段确认”的策略。报文段11、12和13到达并被放入IP的接收队列。当报文段11被处理时,连接被标记为产生一个经受时延的确认。当报文段12被处理时,它们的ACK(报文段14)被产生且连接的经受时延的确认标志被清除。报文段13使得连接再次被标记为产生经受时延。但在时延定时器溢出之前,报文段15处理完毕,因此该确认立刻被发送

报文段7、14和16中的ACK确认了两个收到的报文段是很重要的。使用TCP的滑动窗口协议时,接收方不必确认每一个收到的分组

收发包流程

5.5拥塞算法

慢启动算法

窗口cwnd

当拥塞发生时,我们希望降低分组进入网络的传输速率.

慢启动将根据这个往返时间中所收到的确认的个数增加cwnd,发送方发送一个报文段,收到该ACK时,拥塞窗口从1增加为2,即可以发送两个报文段。当收到这两个报文段的ACK时,拥塞窗口就增加为4等

拥塞避免算法

拥塞避免算法要求每次收到一个确认时将cwnd增加1/cwnd

拥塞发生

如果超时,发送方仍未收到确认报文,那么TCP就会认为当前网络已经发生拥塞。采用慢开始算法进行处理。

收到连续3个重复的ACK报文如果发送方收到了连续3个重复的ACK报文,那么TCP也会认为当前网络发生了拥塞.

平时两个算法切换,至少一个算法生效

拥塞发生时(超时或收到重复确认),ssthresh被设置为当前窗口大小的一半,如果是超时引起了拥塞,则cwnd被设置为1个报文段(这就是慢启动)

当新的数据被对方确认时,就增加cwnd,依赖于是否正在进行慢启动或拥塞避免。如果cwnd小于或等于ssthresh,则正在进行慢启动,否则正在进行拥塞避免。慢启动一直持续到我们回到当拥塞发生时所处位置的半时候才停止,然后转为执行拥塞避免。

5.6拥塞状态

open状态:

open状态是常态, 这种状态下tcp 发送放通过优化后的快速路径来接收处理ack,当一个ack到达时, 发送方根据拥塞窗口是小于还是大于 满启动阈值,按照慢启动或者拥塞避免来增大拥塞窗口。

disorder 状态:

当发送方收到 DACK 或者SACK的时候, 将变为disorder 状态, 再次状态下拥塞窗口不做调整,但是没到一个新到的段 就回触发发送一个新的段发送出去此时TCP 遵循发包守恒原则,就是一个新包只有在一个老的包离开网络后才发送;拥塞窗口恒定,网络中数据包守恒。

cwr 状态:

发送发被通知出现拥塞通知, 直接告知!!比喻通过icmp 源端抑制 等方式通知,当收到拥塞通知时,发送方并不是立刻减少拥塞窗口, 而是每个一个新到的ack减小一个段 知道窗口减小到原来的一半为止,发送方在减小窗口过程中如果没有明显重传,就回保持cwr 状态, 但是如果出现明显重传,就回被recovery 或者loss 中断而进入 loss recovery 状态;拥塞窗口减小,且没有明显的重传。

recovery状态:

在收到足够多的连续重复的ack 后,发送方重传第一个没有被确认的段,进入recovery 状态,默认情况下 连续收到三个重复的ack 就回进入recovery状态,在recovery状态期间,拥塞窗口的大小每隔一个新到的确认就会减少一个段, 和cwr 一样 出于拥塞控制期间,这种窗口减少 终止于大小等于ssthresh,也就是进入recovery状态时窗口的一半。发送方重传被标记为丢失的段,或者根据包守恒原则 发送数据,发送方保持recovery 状态直到所有recovery状态中被发送的数据被确认,此时recovery状态就回变为open,超时重传可能中断recovery状态。

Loss 状态 :

当一个RTO到期,发送方进入Loss 状态 , 所有正在发送的段都被标记为丢失段,拥塞窗口设置为一个段。发送方启动满启动算法增大窗口。Loss 状态是 拥塞窗口在被重置为一个段后增大,但是recovery状态是拥塞窗口只能被减小, Loss 状态不能被其他状态中断,所以只有所有loss 状态下开始传输的数据得到确认后,才能到open状态, 也就是快速重传不能在loss 状态下触发。当一个RTO 超时, 或者收到ack 的确认已经被以前的sack 确认过, 则意味着我们记录的sack信息不能反应接收方实际的状态,此时就回进入Loss 状态。

5.7拥塞传输场景

报文段45丢失或损坏;接收到报文段62,也就是第3个重复ACK,引起自序号6657开始的数据报文段(报文段63)进行重传。在重传后(报文段63),发送方继续正常的数据传输(报文段67、69和71)。TCP不需要等待对方确认重传。当缺少的报文段(报文段63)到达时,接收方TCP在其缓存中保存第6657~8960字节的数据,并将这2304字节的数据交给用户进程。所有这些数据在报文段72中进行确认。请注意此时该ACK通告窗口大小为5888(8192-2304)。

5.8定时器

创建超时定时器

cp_v4_init_sock
  |-> tcp_init_sock
       |-> tcp_init_xmit_timers
           |-> inet_csk_init_xmit_timers 

在初始化连接时,设置三个定时器实例的处理函数:
icsk->icsk_retransmit_timer的处理函数为tcp_write_timer()
icsk->icsk_delack_timer的处理函数为tcp_delack_timer()
sk->sk_timer的处理函数为tcp_keepalive_timer()

删除超时定时器

tcp_done
tcp_disconnect
tcp_v4_destroy_sock
  |-> tcp_clear_xmit_timers
     |-> inet_csk_clear_xmit_timers
     
void inet_csk_clear_xmit_timers(struct sock *sk) { struct inet_connection_sock *icsk = inet_csk(sk); icsk->icsk_pending = icsk->icsk_ack.pending = icsk->icsk_ack.blocked = 0; sk_stop_timer(sk, &icsk->icsk_retransmit_timer); sk_stop_timer(sk, &icsk->icsk_delack_timer); sk_stop_timer(sk, &sk->sk_timer); }

激活超时定时器

icsk->icsk_retransmit_timer和icsk->icsk_delack_timer的激活函数为inet_csk_reset_xmit_timer(),

超时重传定时器在以下几种情况下会被激活:

1.发现对端把保存在接收缓冲区的SACK段丢弃时。

2.发送一个数据段时,发现之前网络中不存在发送且未确认的段。

之后每当收到确认了新数据段的ACK,则重置定时器。

3.发送SYN包后。

4.一些特殊情况。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/400173.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

JS实现根据数组对象的某一属性排序

JS实现根据数组对象的某一属性排序 一、冒泡排序&#xff08;先了解冒泡排序机制&#xff09;二、根据数组对象的某一属性排序&#xff08;引用sort方法排序&#xff09; 一、冒泡排序&#xff08;先了解冒泡排序机制&#xff09; 以从小到大排序为例&#xff0c;冒泡排序的原…

typescript映射类型

ts映射类型简介 TypeScript中的映射类型&#xff08;Mapped Type&#xff09;是一种高级类型&#xff0c;它允许我们基于现有类型创建新的类型&#xff0c;同时对新类型的每个属性应用一个转换函数。通过使用映射类型&#xff0c;我们可以方便地对对象的属性进行批量操作&…

人工智能深度学习

目录 人工智能 深度学习 机器学习 神经网络 机器学习的范围 模式识别 数据挖掘 统计学习 计算机视觉 语音识别 自然语言处理 机器学习的方法 回归算法 神经网络 SVM&#xff08;支持向量机&#xff09; 聚类算法 降维算法 推荐算法 其他 机器学习的分类 机器…

文献速递:GAN医学影像合成--用生成对抗网络生成 3D TOF-MRA 体积和分割标签

文献速递&#xff1a;GAN医学影像合成–用生成对抗网络生成 3D TOF-MRA 体积和分割标签 01 文献速递介绍 深度学习算法在自然图像分析中的成功近年来已被应用于医学成像领域。深度学习方法已被用于自动化各种耗时的手动任务&#xff0c;如医学图像的分割和分类&#xff08;G…

软件测试面试,大厂上岸究竟有什么秘诀?

最后&#xff0c;总结一下个人认为比较重要的知识点&#xff1a;接口自动化测试 &#xff1a;测试框架&#xff0c;多个有关联的接口的用例编写&#xff0c;用例的组织及存储&#xff0c;接口测试的覆盖率&#xff0c;RESTAssured 的封装等。UI 自动化测试 &#xff1a;iOS 和 …

【2024美赛】C题 Momentum in Tennis网球运动中的势头 25页中英文论文及Python代码

【2024美赛】C题 Momentum in Tennis网球运动中的势头 25页中文论文 1 题目 A题&#xff1a;2024MCM问题C&#xff1a;网球运动中的势头 在2023年温布尔登网球公开赛男子组决赛中&#xff0c;20岁的西班牙新星卡洛斯-阿尔卡拉斯击败了36岁的诺瓦克-德约科维奇。这是德约科维奇…

Hypervisor是什么

Hypervisor 通常指的是虚拟机监视器&#xff08;VirtualMachine Monitor&#xff09;&#xff0c;它是一种软件或硬件&#xff0c;可以在物理服务器上创建和管理多个虚拟机&#xff08;VirtualMachine&#xff09;。 Hypervisor 提供了一个抽象层&#xff0c;将物理服务器的资源…

Nginx 配置详解

官网&#xff1a;http://www.nginx.org/ 序言 Nginx是lgor Sysoev为俄罗斯访问量第二的rambler.ru站点设计开发的。从2004年发布至今&#xff0c;凭借开源的力量&#xff0c;已经接近成熟与完善。 Nginx功能丰富&#xff0c;可作为HTTP服务器&#xff0c;也可作为反向代理服务…

Git基础(22):创建私人令牌和下拉代码

如何创建令牌和拉取项目代码 创建一个令牌&#xff0c;这里以gitee为例&#xff0c;注意将生成的令牌复制保存下拉 打开git bash 窗口&#xff0c;使用命令拉取项目 git clone https://oauth2:你的令牌项目地址(不要带https) #示例 git clone https://oauth2:845579xxxxxxxxx…

A Survey for Foundation Models in Autonomous Driving

摘要 **基础模型&#xff08;foundation models&#xff09;**的出现彻底改变了自然语言处理和计算机视觉领域&#xff0c;为它们在自动驾驶&#xff08;AD&#xff09;中的应用铺平了道路。本调查对40多篇研究论文进行了全面回顾&#xff0c;展示了基础模型在增强AD中的作用。…

error Error: certificate has expired

解决方案&#xff1a; yarn config set "strict-ssl" false -g 我开发的chatgpt网站&#xff1a; https://chat.xutongbao.top

数据结构与算法:队列

在上篇文章讲解了栈之后&#xff0c;本篇也对这一章进行收尾&#xff0c;来到队列&#xff01; 队列 队列的介绍队列的存储结构队列顺序存储的不足之处 循环队列的定义队列的链式存储结构链队列的构建链队列的初始化队尾入队队头出队获取队头队尾元素判断队列是否为空获取队列元…

【北京游戏业:出海竞争实力全面】

本文将深入分析北京的游戏行业发展。在上海、广州、北京、深圳、成都、杭州、福建七大游戏产业中心城市中&#xff0c;北京无疑是出海竞争力最强的游戏产业集群。本文将全面剖析北京游戏行业的发展现状。 北京是中国游戏产业的发源地。拥有从游戏引擎到美术设计等完整的产业链…

奇异递归模板模式应用5-静态多态

动态多态&#xff1a;C动态多态是利用虚函数特性实现的&#xff0c;即基类指针(引用&#xff09;指向派生类指针(引用)。由于虚函数的实现是在运行期进行的&#xff0c;因而会产生运行期开销&#xff08;虚表指针偏移&#xff0c;与分支预测器和CPU指令流水线相关&#xff09;。…

【C++】类和对象---const成员,取地址及const取地址操作符重载,static成员

目录 ⭐const成员 ⭐取地址及const取地址操作符重载 ⭐static成员 ⭐概念 ⭐特性 ⭐const成员 将const修饰的“成员函数”称之为const成员函数&#xff0c;const修饰类成员函数&#xff0c;实际修饰该成员函数隐含的this指针&#xff0c;表明在该成员函数中不能对类的任何…

怎样使用Pyglet库给推箱子游戏画关卡地图

目录 pyglet库 画图事件 按键事件 程序扩展 关卡地图 pyglet库 是一个跨平台的Python多媒体库&#xff0c;提供了一个简单易用的接口来创建窗口、加载图像和视频、播放音频、处理用户输入事件以及进行2D图形绘制。特别适合用于游戏开发、视听应用以及其它需要高效图形渲染…

笔记:torch.roll

最近在准备写 swin transformer 的文章&#xff0c;记录下 torch.roll 的用法&#xff1a; >>> x torch.tensor([1, 2, 3, 4, 5, 6, 7, 8]).view(4, 2) >>> x tensor([[1, 2],[3, 4],[5, 6],[7, 8]]) 第0维度向下移1位&#xff0c;多出的[7,8]补充到顶部 &g…

如何使用idea连接服务器上的mysql?

安全组进行开放 具体步骤 关闭防火墙 开放端口号 重启防火墙 firewall-cmd --reload在mysql进行修改配置 update user set host % where user root;flush privileges;使得其他网络也可以连接这个数据库 另外如果想要sqlyog或者其他图形化界面要连接到数据库可以看下面这…

K8S实战:Centos7部署Kubernetes1.20.0集群

目录 一、准备工作1.1、创建3台虚拟机1.1.1、下载虚拟机管理工具1.1.2、安装虚拟机管理工具1.1.3、下载虚Centos镜像1.1.4、创建3台虚拟机1.1.5、设置虚拟机网络环境 1.2、虚拟机基础配置&#xff08;3台虚拟机进行相同处理&#xff09;1.2.1、配置host1.2.2、关闭防火墙1.2.3、…

2.21数据与结构算法学习日记(最小生成树prim算法)

目录 最小生成树prim 最小生成树算法是一种用来在一个加权连通图中找到最小生成树的算法。最小生成树是一个包含图中所有顶点的树&#xff0c;其总权值最小。 prim算法 洛谷题目示例 P3366 【模板】最小生成树 题目描述 输入格式 输出格式 输入输出样例 说明/提示 题…