计算机设计大赛 深度学习动物识别 - 卷积神经网络 机器视觉 图像识别

文章目录

  • 0 前言
  • 1 背景
  • 2 算法原理
    • 2.1 动物识别方法概况
    • 2.2 常用的网络模型
      • 2.2.1 B-CNN
      • 2.2.2 SSD
  • 3 SSD动物目标检测流程
  • 4 实现效果
  • 5 部分相关代码
    • 5.1 数据预处理
    • 5.2 构建卷积神经网络
    • 5.3 tensorflow计算图可视化
    • 5.4 网络模型训练
    • 5.5 对猫狗图像进行2分类
  • 6 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学习动物识别 - 卷积神经网络 机器视觉 图像识别

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 背景

目前,由于计算机能力和相关理论的发展获得了重大突破,基于深度学习的图像检测与识别技术已经广泛应用到人们的生产生活中。学长将深度学习的技术应用到野生动物图像识别中,优化了传统的识别方法,形成对野生动物图像更为准确的识别,为实现高效的野生动物图像识别提供了可能。不同于传统的野生动物识别,基于深度学习的野生动物识别技术可以捕获到野生动物更加细致的信息,有利于对野生动物进行更加准确的识别和研究。因此,对基于深度学习的野生动物识别和研究,可以更好的帮助社会管理者和政府全面有效的对野生动物进行保护和监管,这也正是保护和识别野生动物的关键,同时这对整个自然和社会的和谐发展具有极大的推动作用。

2 算法原理

2.1 动物识别方法概况

基于人工特征的野生动物识别方法主要通过人工对野生动物图像中具有辨识度的特征信息进行提取,并通过特征比对的方式就可以对野生动物所属的类别进行识别判断。

在深度学习技术普及之前,传统的数字图像处理技术与传统机器学习技术一直是研究的热点。传统的数字图像处理技术有模块分割、降低噪声点、边缘检测等方法。传统的机器学习技术有支持向量机、随机森林算法、BP
神经网络算法等。

深度学习技术是通过计算机模拟人类大脑的分层表达结构来建立网络模型,从原始数据集中对相关信息逐层提取。之后通过建立相应的神经网络对数据进行学习和分析,从而提高对目标预测和识别的准确率。如今,深度学习技术已经相对成熟,在对目标进行特征提取方面,卷积神经网络技术逐渐取代了传统的图像处理技术,并且在人类的生产生活中得到了广泛应用,这为研究野生动物更高效的识别方法奠定了基础。

2.2 常用的网络模型

图像识别是指对原始图像进行整体分析来达到预测原始图像所属类别的技术。计算机视觉领域中对图像识别技术进行了优化,与此同时,深度学习技术也对图像识别领域展开了突破。目前在图像识别领域中,研究人员开始使用深度学习的技术,并通过在实际应用中发现,基于深度学习的识别技术比传统的识别技术效果更好,且更具有优势。

2.2.1 B-CNN

双线性卷积神经网络(Bilinear
CNN,B-CNN)[34]是用两个卷积神经网络对图像进行特征提取,然后使用相应的函数将得到所有特征进行组合,组合的数据带入到分类器中进行分类。

在这里插入图片描述

2.2.2 SSD

经典的 SSD 模型是由经典网络和特征提取网络组成。

通过引入性能更好的特征提取网络对 SSD
目标检测模型进行了优化。Fu[49]等人提出了增加卷积神经网络层数和深度的方法用于提高识别准确率。通过实际应用之后,发现该方法识别准确率确实得到了一定程度的提高,但是模型结构却越来越复杂,同时对深层次的网络训练也越来越困难。

在这里插入图片描述

3 SSD动物目标检测流程

在这里插入图片描述

学长首先对 DenseNet-169 网络进行初始化,使用 DenseNet-169 网络作为目标检测的前置网络结构,并运用迁移学习的方法对
DenseNet-169 进行预训练,并将Snapshot Serengeti数据集下的权重值迁移到野生动物检测任务中,使数据集的训练速度得到提升。将
DenseNet-169 作为前置网络置于 SSD 中的目标提取检测网络之前,更换完前置网络的 SSD 目标检测网络依然完整。

4 实现效果

在这里插入图片描述
在这里插入图片描述

做一个GUI交互界面

在这里插入图片描述

5 部分相关代码

5.1 数据预处理

import cv2 as cv
import os
import numpy as np

import random
import pickle

import time

start_time = time.time()

data_dir = './data'
batch_save_path = './batch_files'

# 创建batch文件存储的文件夹
os.makedirs(batch_save_path, exist_ok=True)

# 图片统一大小:100 * 100
# 训练集 20000:100个batch文件,每个文件200张图片
# 验证集 5000:一个测试文件,测试时 50张 x 100 批次

# 进入图片数据的目录,读取图片信息
all_data_files = os.listdir(os.path.join(data_dir, 'train/'))

# print(all_data_files)

# 打算数据的顺序
random.shuffle(all_data_files)

all_train_files = all_data_files[:20000]
all_test_files = all_data_files[20000:]

train_data = []
train_label = []
train_filenames = []

test_data = []
test_label = []
test_filenames = []

# 训练集
for each in all_train_files:
    img = cv.imread(os.path.join(data_dir,'train/',each),1)
    resized_img = cv.resize(img, (100,100))

    img_data = np.array(resized_img)
    train_data.append(img_data)
    if 'cat' in each:
        train_label.append(0)
    elif 'dog' in each:
        train_label.append(1)
    else:
        raise Exception('%s is wrong train file'%(each))
    train_filenames.append(each)

# 测试集
for each in all_test_files:
    img = cv.imread(os.path.join(data_dir,'train/',each), 1)
    resized_img = cv.resize(img, (100,100))

    img_data = np.array(resized_img)
    test_data.append(img_data)
    if 'cat' in each:
        test_label.append(0)
    elif 'dog' in each:
        test_label.append(1)
    else:
        raise Exception('%s is wrong test file'%(each))
    test_filenames.append(each)

print(len(train_data), len(test_data))

# 制作100个batch文件
start = 0
end = 200
for num in range(1, 101):
    batch_data = train_data[start: end]
    batch_label = train_label[start: end]
    batch_filenames = train_filenames[start: end]
    batch_name = 'training batch {} of 15'.format(num)

    all_data = {
    'data':batch_data,
    'label':batch_label,
    'filenames':batch_filenames,
    'name':batch_name
    }

    with open(os.path.join(batch_save_path, 'train_batch_{}'.format(num)), 'wb') as f:
        pickle.dump(all_data, f)

    start += 200
    end += 200

# 制作测试文件
all_test_data = {
    'data':test_data,
    'label':test_label,
    'filenames':test_filenames,
    'name':'test batch 1 of 1'
    }

with open(os.path.join(batch_save_path, 'test_batch'), 'wb') as f:
    pickle.dump(all_test_data, f)

end_time = time.time()
print('制作结束, 用时{}秒'.format(end_time - start_time))

5.2 构建卷积神经网络

cnn卷积神经网络的编写如下,编写卷积层、池化层和全连接层的代码

conv1_1 = tf.layers.conv2d(x, 16, (3, 3), padding='same', activation=tf.nn.relu, name='conv1_1')
conv1_2 = tf.layers.conv2d(conv1_1, 16, (3, 3), padding='same', activation=tf.nn.relu, name='conv1_2')
pool1 = tf.layers.max_pooling2d(conv1_2, (2, 2), (2, 2), name='pool1')
conv2_1 = tf.layers.conv2d(pool1, 32, (3, 3), padding='same', activation=tf.nn.relu, name='conv2_1')
conv2_2 = tf.layers.conv2d(conv2_1, 32, (3, 3), padding='same', activation=tf.nn.relu, name='conv2_2')
pool2 = tf.layers.max_pooling2d(conv2_2, (2, 2), (2, 2), name='pool2')
conv3_1 = tf.layers.conv2d(pool2, 64, (3, 3), padding='same', activation=tf.nn.relu, name='conv3_1')
conv3_2 = tf.layers.conv2d(conv3_1, 64, (3, 3), padding='same', activation=tf.nn.relu, name='conv3_2')
pool3 = tf.layers.max_pooling2d(conv3_2, (2, 2), (2, 2), name='pool3')
conv4_1 = tf.layers.conv2d(pool3, 128, (3, 3), padding='same', activation=tf.nn.relu, name='conv4_1')
conv4_2 = tf.layers.conv2d(conv4_1, 128, (3, 3), padding='same', activation=tf.nn.relu, name='conv4_2')
pool4 = tf.layers.max_pooling2d(conv4_2, (2, 2), (2, 2), name='pool4')

flatten = tf.layers.flatten(pool4)
fc1 = tf.layers.dense(flatten, 512, tf.nn.relu)
fc1_dropout = tf.nn.dropout(fc1, keep_prob=keep_prob)
fc2 = tf.layers.dense(fc1, 256, tf.nn.relu)
fc2_dropout = tf.nn.dropout(fc2, keep_prob=keep_prob)
fc3 = tf.layers.dense(fc2, 2, None)

5.3 tensorflow计算图可视化

self.x = tf.placeholder(tf.float32, [None, IMAGE_SIZE, IMAGE_SIZE, 3], 'input_data')
self.y = tf.placeholder(tf.int64, [None], 'output_data')
self.keep_prob = tf.placeholder(tf.float32)

# 图片输入网络中
fc = self.conv_net(self.x, self.keep_prob)
self.loss = tf.losses.sparse_softmax_cross_entropy(labels=self.y, logits=fc)
self.y_ = tf.nn.softmax(fc) # 计算每一类的概率
self.predict = tf.argmax(fc, 1)
self.acc = tf.reduce_mean(tf.cast(tf.equal(self.predict, self.y), tf.float32))
self.train_op = tf.train.AdamOptimizer(LEARNING_RATE).minimize(self.loss)
self.saver = tf.train.Saver(max_to_keep=1)

最后的saver是要将训练好的模型保存到本地。

5.4 网络模型训练

然后编写训练部分的代码,训练步骤为1万步

acc_list = []
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())

    for i in range(TRAIN_STEP):
        train_data, train_label, _ = self.batch_train_data.next_batch(TRAIN_SIZE)

        eval_ops = [self.loss, self.acc, self.train_op]
        eval_ops_results = sess.run(eval_ops, feed_dict={
            self.x:train_data,
            self.y:train_label,
            self.keep_prob:0.7
        })
        loss_val, train_acc = eval_ops_results[0:2]

        acc_list.append(train_acc)
        if (i+1) % 100 == 0:
            acc_mean = np.mean(acc_list)
            print('step:{0},loss:{1:.5},acc:{2:.5},acc_mean:{3:.5}'.format(
                i+1,loss_val,train_acc,acc_mean
            ))
        if (i+1) % 1000 == 0:
            test_acc_list = []
            for j in range(TEST_STEP):
                test_data, test_label, _ = self.batch_test_data.next_batch(TRAIN_SIZE)
                acc_val = sess.run([self.acc],feed_dict={
                    self.x:test_data,
                    self.y:test_label,
                    self.keep_prob:1.0
            })
            test_acc_list.append(acc_val)
            print('[Test ] step:{0}, mean_acc:{1:.5}'.format(
                i+1, np.mean(test_acc_list)
            ))
    # 保存训练后的模型
    os.makedirs(SAVE_PATH, exist_ok=True)
    self.saver.save(sess, SAVE_PATH + 'my_model.ckpt')

训练结果如下:

在这里插入图片描述

5.5 对猫狗图像进行2分类

在这里插入图片描述

在这里插入图片描述

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/400039.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

微信小程序uniapp校园租房指南房屋租赁系统java+python+nodejs+php

语言:javapythonnodejsphp均支持 框架支持:Ssm/django/flask/thinkphp/springboot/express均支持 运行软件:idea/eclipse/vscode/pycharm/wamp均支持 数据库 mysql 数据库工具:Navicat等 前端开发:vue 小程序端运行软件 微信开发者工具/hbuiderx uni-…

金三银四即将到来,该准备简历和面试了!

一直以来找讲师帮忙看简历的人很多,但是很少会有人问讲师:根据简历该如何准备面试? 还有一些人简历是达标的,但是面试不通过的,却简单地认为是简历问题,不会认为是自己的掌握问题。 一年一度的金三银四即…

使用AndroidStudio调试Framework

1.前言 最近在工作过程中,涉及到FW的一些修改,比如PhoneWindowManager,只能通过加日志看打印的方式查看一些内容,比较低效,所以想了解一下FW的调试方式,后来发现AS就可以调试FW.我平时都是在Docker服务器编…

linux ext3/ext4文件系统(part2 jbd2)

概述 jbd2(journal block device 2)是为块存储设计的 wal 机制,它为要写设备的buffer绑定了一个journal_head,这个journal_head与一个transaction绑定,随着事务状态的转移(运行,生成日志&#…

Kubernetes kubeadm 证书到期,更新证书

1.环境说明 lient Version: version.Info{Major:"1", Minor:"19", GitVersion:"v1.19.6", GitCommit:"fbf646b339dc52336b55d8ec85c181981b86331a", GitTreeState:"clean", BuildDate:"2020-12-18T12:09:30Z", G…

多目图像拼接算法

图像拼接一般要经过图像特征提取、特征匹配、融合等步骤来实现。 特征匹配与变换: SIFT(尺度不变特征变换)SURF(加速鲁棒特征)ORB(Oriented FAST and Rotated BRIEF)AKAZE(加速的KAZE特征)全景图像拼接算法: 基于特征匹配的拼接:利用特征点匹配找到重叠区域,然后进…

【C++】初始化列表、static成员、友元、匿名对象、附练习题

文章目录 前言一、构造函数【初始化列表】1.1 构造函数体赋值1.2 初始化列表1.3 explicit关键字 二、static成员2.1 概念2.2 特性 三、友元3.1 友元函数3.2 内部类 四、匿名对象4.1 拷贝对象时的一些编译器优化 五、再次理解类和对象六、练习题6.1 求123...n,要求不…

读书笔记-增强型分析:AI驱动的数据分析、业务决策与案例实践

目录 前言 运用人工智能技术,可以使人类社会变得更美好。人们总是期待产品更适合、服务更贴心、生活更便利。在实践中,技术给企业赋能,企业通过优质的产品和服务满足社会,提升人类福祉。很多金融企业已经开始尝试向潜在客户推送…

搜维尔科技:OptiTrack探索人类与技术之间关系的开创性表演

另一种蓝色通过 OptiTrack 释放创造力 总部位于荷兰的当代舞蹈团因其探索人类与技术之间关系的开创性表演而受到广泛赞誉。该公司由富有远见的编舞家大卫米登多普创立,不仅利用技术作为探索的主题,而且将其作为表达故事的动态工具。 “我一直对文化与…

Kubernetes(K8s)的基础概念

K8s的概念 K8S 的全称为 Kubernetes (K12345678S) (简化全称) Kubernetes 是一个可移植、可扩展的开源平台,用于 管理容器化工作负载和服务,有助于声明式配置和自动化。它拥有庞大且快速发展的生态系统。Kubernetes 服务、支持和…

CQT新里程碑:SOC 2 数据安全认证通过,加强其人工智能支持

Covalent Network(CQT)发展新里程碑:SOC 2 数据安全认证通过,进一步加强了其人工智能支持 Covalent Network(CQT)现已完成并通过了严格的 Service Organization Control(SOC) 2 Type II 的合规性…

《图解HTTP》笔记1:http的诞生

1,http的诞生: 1.1 为共享知识而生 我们现在使用web(World Wide Web的简称,即万维网)浏览器,目前可以输入一个网址(http://www.baidu.com),就会有一个网页显示出来。 最开始设想出…

SpringSecurity安全框架

我们使用这个springSecurity安全框架,作用是认证,授权,将用户的权限和对应的资源进行绑定,默认的是在内存中保存的,实际开发中,是需要根据项目业务的需求对某些方法进行重写,使数据库中权限对应的资源进行绑定,就是查看当前登录的用户所扮演的角色,该角色有哪些权限 授权 1内…

【python】深入探索使用Matplotlib中的plt.legend()添加图例

当我们绘制复杂的图表,尤其是包含多个数据系列的图表时,一个清晰、易读的图例是至关重要的。plt.legend()函数是Matplotlib库中用于添加和定制图例的关键工具。在本篇博文中,我们将深入探讨plt.legend()的功能、用法以及如何通过它提升图表的…

Tomcat线程池原理(上篇:初始化原理)

文章目录 前言正文一、从启动脚本开始分析二、ProtocolHandler 的启动原理三、AbstractEndPoint 的启动原理四、创建默认线程池五、参数配置原理5.1 常规的参数配置5.2 自定义线程池5.3 测试自定义线程 前言 在Java Web的开发过程中,Tomcat常用的web容器。SpringBo…

挑战杯 基于YOLO实现的口罩佩戴检测 - python opemcv 深度学习

文章目录 0 前言1 课题介绍2 算法原理2.1 算法简介2.2 网络架构 3 关键代码4 数据集4.1 安装4.2 打开4.3 选择yolo标注格式4.4 打标签4.5 保存 5 训练6 实现效果6.1 pyqt实现简单GUI6.3 视频识别效果6.4 摄像头实时识别 7 最后 0 前言 🔥 优质竞赛项目系列&#xf…

泛微e-office系统存在敏感信息泄露 附POC软件

免责声明:请勿利用文章内的相关技术从事非法测试,由于传播、利用此文所提供的信息或者工具而造成的任何直接或者间接的后果及损失,均由使用者本人负责,所产生的一切不良后果与文章作者无关。该文章仅供学习用途使用。 1. 泛微e-office系统简介 微信公众号搜索:南风漏洞复…

车载软件架构Adaptive AUTOSAR —— 身份和访问管理和加密技术

车载软件架构Adaptive AUTOSAR —— 身份和访问管理和加密技术 我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师(Wechat:gongkenan2013)。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 本就是小人物,输了就是输了,不要在意别人怎么看自己。…

探索NFC技术在游戏玩具娱乐,医疗保健和穿戴设备领域的三大应用

NFC是与众不同的无线技术。这意味着它只能在两个设备相近时起作用。在其他用无线技术随机广播的方式以被接收时,NFC更重要的独特之处于其使用电源的方式。或者,更确切地说,它可以在不供电的环境下进行工作。它是一种非接触式智能卡技术的演进…

挑战30天学完Python:Day16 日期时间

📘 Day 16 🎉 本系列为Python基础学习,原稿来源于 30-Days-Of-Python 英文项目,大奇主要是对其本地化翻译、逐条验证和补充,想通过30天完成正儿八经的系统化实践。此系列适合零基础同学,或仅了解Python一点…