MySQL 锁的内存结构

目录

1.摘要

2. 加锁的本质

3. 锁结构详解

3.1 锁所在的事务信息

3.2 索引信息

3.3 表锁/行锁信息

3.4 type_mode

3.5 其他信息

3.6 一堆比特位


1.摘要

在 MySQL 中,有很多种锁,例如行锁,表锁,页锁,全局锁,它们锁的粒度都不一样。更多情况下,我们只是关注这些锁的区别和作用,却很少关注它们本身,本篇我们就来简单了解一下MySQL 中锁的内存结构,锁中都包含了哪些信息。

2. 加锁的本质

在 Java 中,我们对一个代码块或一个方法进行加锁,锁住的都是唯一资源,是需要多个线程去进行争抢的;而在MySQL中,我们对一行记录去进行加锁,实质上是在内存结构中创建了一个锁结构与之相关联。

但这样就会出现一个问题。如果一个事务要对多条记录进行加锁,难道要生成多个锁结构吗?如果数据量过多,锁结构也随之增多,会出现大量的冗余,这么做合理吗?

当然是不合理的。因此,MySQL在对不同的记录进行加锁时,会对需要加锁的记录去做判断,如果符合下面这些条件,就会放在同一个锁结构中。

(一)在同一个事务中进行加锁操作;

(二)被加锁的记录在同一个页面中;

(三)加锁的类型是一样的;

(四)等待的状态是一样的;

可以先简单及以下这四句话,下面我会进行详细说明。

3. 锁结构详解

MySQL中有很多种存储引擎,这里我们以最为常用的InnoDB存储引擎为例说明,这也是因为只有InnoDB存储引擎支持行级锁。InnoDB存储引擎的锁结构如下所示,行级锁与表级锁的锁信息略有不同,其余信息都是一样的。

3.1 锁所在的事务信息

记录操作当前数据的事务信息(这里只是一个指针,通过指针我们可以获取当前事务的详细信息,例如事物的id,事务的隔离级别);

3.2 索引信息

对于行锁来说,需要记录加锁的记录属于哪个索引,这里也是一个指针;

3.3 表锁/行锁信息

表锁结构和行锁结构略有不同。表锁主要记录对那个表进行加锁;   行锁则记录了三个重要信息,分别是 表空间Space ID,页号Page Number,n_bits(对于行锁来说,一条记录就对应着一个比特位,一个页面中包含很多记录,用不同的比特位来区分到底是哪一条记录加了锁。为此在行锁结构的末尾放置了一堆比特位,这个n_bits属性代表使用了多少比特位,这里只是一个记录数,但不存放真正的比特位,真正的比特位是由最下面"一堆比特位"存放的);

3.4 type_mode

锁的模式(lock_mode)占用了低四位,可选值如下

LOCK_IS(十进制的0):表示共享意向锁,即 IS锁;

LOCK_IX(十进制的1):表示独占意向锁,即 IX锁;

LOCK_S(十进制的2):表示共享锁,即 S锁;

LOCK_X(十进制的3):表示独占锁,即 X锁;

LOCK_AUTO_INC(十进制的4):表示 AUTO-INC锁;

在InnoDB存储引擎中,LOCK_IS,LOCK_IX,LOCK_AUTO_INC 都算是表级锁的模式,LOCK_S,LOCK_X 既可以算是表级锁模式,也可以算作行级锁模式

锁的类型(lock_type),占用了第5~8位,不过现阶段只有第5位和第6位被使用:

LOCK_TABLE(十进制的16):也就是第5个比特位为1时,表示表级锁;

LOCK_REC(十进制的32):也就是第6个比特位为1时,表示行级锁;

锁的具体行为(rec_lock_type):使用其余位表示,只有在lock_type 值为LOCK_REC时,也就是该锁为行级锁时,才会细分为更多的类型,如下

LOCK_ORDINARY(十进制的8):表示 next-key 锁;

LOCK_GAP(十进制的512):也就是当第十个比特位为1时,表示GAP锁;

LOCK_REC_NOT_GAP(十进制的1024):即当第11个比特位为1时,表示正经记录锁;

LOCK_INSERT_INTENTION(十进制的2048):即当第12个比特位为1时,表示插入意向锁

:也在这个32位数字中;

LOCK_WAIT(十进制的256):即我们上面提到的等待状态,IS_WAITING(是否处于等待状态)表示第九个比特位为1时,为true,当前事务还尚未获取到锁,正处于等待状态;为0即false时,表示当前事务获取锁成功;

3.5 其他信息

为了更好地管理系统运行过程中生成的各种锁结构而设计了各种哈希表和链表;

3.6 一堆比特位

对应上面第三条行锁信息,在行锁结构中,末尾还放置了一堆比特位,比特位的数量就是有上面的 n_bits 来决定的,InnoDB数据页中的每条记录在记录头信息中都包含了一个heap_no 属性,伪记录Infimum的heap_no值为0,Supermum的heap_no值为1,之后插入每条记录,heap_no的值就增加1。锁结构最后的一堆比特位就对应着一个页面中的记录,一个比特位映射一个heap_no,即一个比特位映射到业内的一条记录。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/398285.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

0207-2-计算机组成

Principle-of-Computer-Composition 计算机组成原理思维导图 计算机组成 第一章 计算机系统概论 冯诺依曼型计算机特点 1.计算机由运算器,控制器,存储器,输入和输出设备5部分组成2.采用存储程序的方式,程序和数据放在同一个存…

网页布局之浮动

一,传统网页布局的三种方式 普通流(标准流)、浮动、定位。 二,标准流(普通流/文档流) 即为标签按照规定好的默认方式排列。 1.块级元素会独占一行,从上向下顺序排列。 常用元素:…

3ds Max视频怎么渲染 3ds Max云渲染操作

在3ds Max软件中制作视频动画本质上是逐帧生成画面,并将这些连续帧串联起来创造出动态连贯的视觉效果。常见的视频帧率包括25 FPS(每秒帧数)、60 FPS、以及120 FPS等,帧率的提升可以使视频动画更加流畅。在实质上,视频渲染就是动画渲染&#…

大厂的数据质量中心系统设计

日常工作中,数据开发上线完一个任务后并不是就可以高枕无忧,时常因上游链路数据异常或者自身处理逻辑的 BUG 导致产出的数据结果不可信。而问题发现可经历较长周期(尤其离线场景),往往是业务方通过上层数据报表发现数据…

[计算机网络]---UDP协议

前言 作者:小蜗牛向前冲 名言:我可以接受失败,但我不能接受放弃 如果觉的博主的文章还不错的话,还请点赞,收藏,关注👀支持博主。如果发现有问题的地方欢迎❀大家在评论区指正 目录 一、端口号…

[职场] 质量管理涉及哪些方面 #职场发展#笔记#经验分享

质量管理涉及哪些方面 质量管理是一种管理方法和理念,旨在确保产品、服务或流程符合预期的质量标准和要求。它涉及制定质量政策和目标、制定质量计划、执行质量控制措施、进行质量评估和持续改进等活动。 质量管理员是负责管理和维护质量管理体系的专业人员。他们负…

Spring6学习技术|IoC+基于xml管理bean

学习材料 尚硅谷Spring零基础入门到进阶,一套搞定spring6全套视频教程(源码级讲解) IoC 控制反转。是一种设计思想。 1.获取bean对象的方法 通过id,通过class,和双重方式。 ApplicationContext context new Cla…

被列入黑名单发送邮件失败

现在的虚拟主机产品,基本上都提供域名的企业邮箱服务,用户使用企业邮箱也比较普遍,在使用过程中,如果一旦发生发件人IP被列入黑名单,将严重影响您发邮件。 上周有一个使用Hostease的虚拟主机的客户,联系hos…

C语言easyx飞机大战源码+素材(大屏版)

在上一期的博客中给大家分享了小屏版的飞机大战的源码和素材 往期回顾: C语言easyx飞机大战源码+素材 (点击这里进入) 今天给大家带来一个更高级的飞机大战版本 废话不多说,直接看效果 看着不错吧 接下来给大家看看部分源码 #include "stdafx.h" #include &…

Linux编辑器——Vim详解

目录 ⭐前言 ⭐vim的基本概念 ⭐vim的基本操作 ⭐vim命令模式命令集 ⭐vim末行模式命令集 ⭐简单vim配置 ⭐配置文件的位置 ⭐常用配置选项 ⭐前言 vi/vim的区别简单点来说,它们都是多模式编辑器,不同的是vim是vi的升级版本,它不仅兼容…

JZ65 不用加减乘除做加法(,^)

一&#xff1a;题目 二&#xff1a;思路 三&#xff1a;代码 int Add(int num1, int num2 ) {//ab (a ^ b)(a&b<<1)//num2 0 时表示没有进位了while(num2){int tmp num1;//得到不进位的数据num1 num2 ^ tmp;//得到进位的数据num2 (tmp&num2)<<1;}ret…

【MySQL】如何处理DB读写分离数据不一致问题?

文章内容 1、前言读写库数据不一致问题我们如何解决&#xff1f;方案一&#xff1a;利用数据库自身特性方案二&#xff1a;不解决方案三&#xff1a;客户端保存法方案四&#xff1a;缓存标记法方案五&#xff1a;本地缓存标记 那DB读写分离情况下&#xff0c;如何解决缓存和数据…

Open CASCADE学习|为什么由Edge生成Wire不成功?

Wire 是一种复合形状&#xff0c;不是由几何形状构建的&#xff0c;而是由边缘的装配构建的。BRepBuilderAPI_MakeWire类可以从一个或多个Edge构建Wire&#xff0c;或将新Edge连接到现有Wire。 BRepBuilderAPI_MakeWire 类将Edge连接到Wire。添加新Edge时&#xff0c;如果其顶点…

云呐智能运维硬件包括哪些?智能运维体系包括哪些?

智能运维体系时&#xff0c;能够详细了解该体系包含的各个组成部分。具体来说&#xff0c;我们应该知道智能运维体系中涉及的软件组件有哪些&#xff0c;以及这些组件是如何相互协作以实现高效运维的。此外&#xff0c;智能运维体系中使用的硬件设备感兴趣。列举了智能运维硬件…

《Go 简易速速上手小册》第4章:接口与抽象(2024 最新版)

文章目录 4.1 接口的定义与实现 - Go 语言的多面手4.1.1 基础知识讲解4.1.2 重点案例&#xff1a;动物乐队功能描述实现代码 4.1.3 拓展案例 1&#xff1a;通用支付系统拓展案例 1&#xff1a;通用支付系统功能描述实现代码 4.1.4 拓展案例 2&#xff1a;动物园管理器拓展案例 …

Vuex状态管理

Vuex状态管理 一、[Vuex](https://vuex.vuejs.org/zh/) 概述二、需求: 多组件共享数据三、vuex 的使用 - 创建仓库四、核心概念 - state 状态五、通过辅助函数 - mapState获取 state中的数据六、开启严格模式及Vuex的单项数据流七、核心概念-mutations八、带参数的 mutations九…

探秘OpenAI的神奇之作:Sora技术揭秘

探秘OpenAI的神奇之作&#xff1a;Sora技术揭秘 1. 引言 在当今科技快速发展的时代&#xff0c;人工智能&#xff08;AI&#xff09;正日益成为各个领域的关键技术。而在人工智能领域中&#xff0c;OpenAI公司一直以来都扮演着重要的角色。他们的最新创新——Sora技术&#x…

Linux:docker的Portainer部署

官网 Portainer: Container Management Software for Kubernetes and Dockerhttps://www.portainer.io/ 1.下载 portainer也是一个docker的镜像直接下载即可 docker pull portainer/portainer 2.运行 直接运行镜像即可直接使用 docker run -d -p 8000:8000 -p 9000:9000 -…

2.20学习总结

1.【模板】单源最短路径&#xff08;弱化版&#xff09; 2.【模板】单源最短路径&#xff08;标准版&#xff09; 3.无线通讯网 4.子串简写 5.整数删除 6.拆地毯 【模板】单源最短路径&#xff08;标准版&#xff09;https://www.luogu.com.cn/problem/P4779 题目描述 给定一个…

社区店选址的黄金法则:选择最佳位置的关键因素

对于计划开设实体店或创业的人来说&#xff0c;选址是至关重要的一步。 作为一名5年的鲜奶吧创业者&#xff0c;我将以专业的角度&#xff0c;详细阐述社区店选址的黄金法则&#xff0c;帮助你找到最理想的店铺位置。 1、市场需求与目标客户&#xff1a; 在选址之前&#xf…