【Flink状态管理(八)】Checkpoint:CheckpointBarrier对齐后Checkpoint完成、通知

文章目录

  • 一. 调用StreamTask执行Checkpoint操作
    • 1. 执行Checkpoint总体代码流程
      • 1.1. StreamTask.checkpointState()
      • 1.2. executeCheckpointing
      • 1.3. 将算子中的状态快照操作封装在OperatorSnapshotFutures中
      • 1.4. 算子状态进行快照
      • 1.5. 状态数据快照持久化
  • 二. CheckpointCoordinator管理Checkpoint
    • 1. Checkpoint执行完毕后的确认过程
    • 2. 触发并完成Checkpoint操作
    • 3. 通知CheckpointComplete给TaskExecutor

上文介绍了CheckpointBarrier的对齐操作,当CheckpointBarrier完成对齐操作后,接下来就是通过notifyCheckpoint()方法触发StreamTask节点的Checkpoint操作。

一. 调用StreamTask执行Checkpoint操作

如下代码,notifyCheckpoint()方法主要包含如下逻辑。

> 1. 判断toNotifyOnCheckpoint不为空。
> 2. 创建CheckpointMetaDataCheckpointMetrics实例,CheckpointMetaData用于存储
> Checkpoint的元信息,CheckpointMetrics用于记录和监控Checkpoint监控指标。
> 3. 触发StreamTask中算子的Checkpoint操作。
protected void notifyCheckpoint(CheckpointBarrier checkpointBarrier, 
                                long bufferedBytes, 
                                long alignmentDurationNanos) throws Exception {
   if (toNotifyOnCheckpoint != null) {
      // 创建CheckpointMetaData对象用于存储Meta信息
      CheckpointMetaData checkpointMetaData =
         new CheckpointMetaData(checkpointBarrier.getId(), 
                                checkpointBarrier.getTimestamp());
            // 创建CheckpointMetrics对象用于记录监控指标
      CheckpointMetrics checkpointMetrics = new CheckpointMetrics()
         .setBytesBufferedInAlignment(bufferedBytes)
         .setAlignmentDurationNanos(alignmentDurationNanos);
      // 调用toNotifyOnCheckpoint.triggerCheckpointOnBarrier()方法触发Checkpoint
        操作
      toNotifyOnCheckpoint.triggerCheckpointOnBarrier(
         checkpointMetaData,
         checkpointBarrier.getCheckpointOptions(),
         checkpointMetrics);
   }
}

注意:StreamTask是唯一实现了Checkpoint方法的子类,即只有StreamTask才能触发当前Task实例中的Checkpoint操作。

 

接下来具体看Checkpoint执行细节

1. 执行Checkpoint总体代码流程

Checkpoint触发过程分为两种情况:一种是CheckpointCoordinator周期性地触发数据源节点中的Checkpoint操作;另一种是下游算子通过对齐CheckpointBarrier事件触发本节点算子的Checkpoint操作。

不管是哪种方式触发Checkpoint,最终都是调用StreamTask.performCheckpoint()方法实现StreamTask实例中状态数据的持久化操作。

 

在StreamTask.performCheckpoint()方法中,首先判断当前的Task是否运行正常,然后使用actionExecutor线程池执行Checkpoint操作,Checkpoint的实际执行过程如下。

  1. Checkpoint执行前的准备操作,让OperatorChain中所有的Operator执行Pre-barrier工作。
  2. 将CheckpointBarrier事件发送到下游的节点中。
  3. 算子状态数据进行快照

执行checkpointState()方法,对StreamTask中OperatorChain的所有算子进行状态数据的快照操作,该过程为异步非阻塞过程,不影响数据的正常处理进程,执行完成后会返回True到CheckpointInputGate中。

  1. task挂掉情况处理:
  • 如果isRunning的条件为false,表明Task不在运行状态,此时需要给OperatorChain中的所有算子发送CancelCheckpointMarker消息,这里主要借助recordWriter.broadcastEvent(message)方法向下游算子进行事件广播。
  • 当且仅当OperatorChain中的算子还没有执行完Checkpoint操作的时候,下游的算子接收到CancelCheckpointMarker消息后会立即取消Checkpoint操作。
private boolean performCheckpoint(
      CheckpointMetaData checkpointMetaData,
      CheckpointOptions checkpointOptions,
      CheckpointMetrics checkpointMetrics,
      boolean advanceToEndOfTime) throws Exception {
   LOG.debug("Starting checkpoint ({}) {} on task {}",
             checkpointMetaData.getCheckpointId(), 
             checkpointOptions.getCheckpointType(), 
             getName());
   final long checkpointId = checkpointMetaData.getCheckpointId();
   if (isRunning) {
      // 使用actionExecutor执行Checkpoint逻辑
      actionExecutor.runThrowing(() -> {
         if (checkpointOptions.getCheckpointType().isSynchronous()) {
             setSynchronousSavepointId(checkpointId);
             if (advanceToEndOfTime) {
                 advanceToEndOfEventTime();
            }
         }
         //Checkpoint操作的准备工作
         operatorChain.prepareSnapshotPreBarrier(checkpointId);
         //将checkpoint barrier发送到下游的stream中
         operatorChain.broadcastCheckpointBarrier(
               checkpointId,
               checkpointMetaData.getTimestamp(),
               checkpointOptions);
         //对算子中的状态进行快照操作,此步骤是异步操作,
         //不影响streaming拓扑中数据的正常处理
         checkpointState(checkpointMetaData, checkpointOptions, 
            checkpointMetrics);
      });
      return true;
   } else {
      // 如果Task处于其他状态,则向下游广播CancelCheckpointMarker消息
      actionExecutor.runThrowing(() -> {
         final CancelCheckpointMarker message = 
             new CancelCheckpointMarker(checkpointMetaData.getCheckpointId());
         recordWriter.broadcastEvent(message);
      });
      return false;
   }
}

 

1.1. StreamTask.checkpointState()

接下来我们看StreamTask.checkpointState()方法的具体实现,如下代码。

  1. 创建CheckpointStateOutputStream实例。主要有如下两种实现类:
    • FsCheckpointStateOutputStream:文件类型系统
    • MemoryCheckpointOutputStream:内存的数据流输出。
  2. 创建CheckpointingOperation实例,CheckpointingOperation封装了Checkpoint执行的具体操作流程,以及checkpointMetaData、checkpointOptions、storage和checkpointMetrics等Checkpoint执行过程中需要的环境配置信息。
  3. 调用CheckpointingOperation.executeCheckpointing()方法执行Checkpoint操作。
private void checkpointState(
      CheckpointMetaData checkpointMetaData,
      CheckpointOptions checkpointOptions,
      CheckpointMetrics checkpointMetrics) throws Exception {
     // 创建CheckpointStreamFactory实例
   CheckpointStreamFactory storage = checkpointStorage.resolveCheckpointStorag
      eLocation(
         checkpointMetaData.getCheckpointId(),
         checkpointOptions.getTargetLocation());
     // 创建CheckpointingOperation实例
   CheckpointingOperation checkpointingOperation = new CheckpointingOperation(
      this,
      checkpointMetaData,
      checkpointOptions,
      storage,
      checkpointMetrics);
   // 执行Checkpoint操作
   checkpointingOperation.executeCheckpointing();
}

 

1.2. executeCheckpointing

如代码所示,CheckpointingOperation.executeCheckpointing()方法主要包含如下逻辑。

  1. 遍历所有StreamOperator算子,然后调用checkpointStreamOperator()方法为每个算子创建OperatorSnapshotFuture对象。这一步将所有算子的快照操作存储在OperatorSnapshotFutures集合中。
  2. 将OperatorSnapshotFutures存储到operatorSnapshotsInProgress的键值对集合中,其中Key为OperatorID,Value为该算子执行状态快照操作对应的OperatorSnapshotFutures对象
  3. 创建AsyncCheckpointRunnable线程对象,AsyncCheckpointRunnable实例中包含了创建好的OperatorSnapshotFutures集合。
  4. 调用StreamTask.asyncOperationsThreadPool线程池运行asyncCheckpointRunnable线程,执行operatorSnapshotsInProgress集合中算子的异步快照操作。
public void executeCheckpointing() throws Exception {
   //通过算子创建执行快照操作的OperatorSnapshotFutures对象
   for (StreamOperator<?> op : allOperators) {
      checkpointStreamOperator(op);
   }
   // 此处省略部分代码
   startAsyncPartNano = System.nanoTime();
   checkpointMetrics.setSyncDurationMillis(
      (startAsyncPartNano - startSyncPartNano) / 1_000_000);
   AsyncCheckpointRunnable asyncCheckpointRunnable = new 
      AsyncCheckpointRunnable(
      owner,
      operatorSnapshotsInProgress,
      checkpointMetaData,
      checkpointMetrics,
      startAsyncPartNano);
   // 注册Closeable操作
   owner.cancelables.registerCloseable(asyncCheckpointRunnable);
   // 执行asyncCheckpointRunnable
         owner.asyncOperationsThreadPool.execute(asyncCheckpointRunnable);
 }

 

1.3. 将算子中的状态快照操作封装在OperatorSnapshotFutures中

如下代码,AbstractStreamOperator.snapshotState()方法将当前算子的状态快照操作封装在OperatorSnapshotFutures对象中,然后通过asyncOperationsThreadPool线程池异步触发所有的OperatorSnapshotFutures操作,方法主要步骤如下。

  1. 创建OperatorSnapshotFutures对象,封装当前算子对应的状态快照操作。
  2. 创建snapshotContext上下文对象,存储快照过程需要的上下文信息,并调用snapshotState()方法执行快照操作。

snapshotState()方法由StreamOperator子类实现,例如在AbstractUdfStreamOperator中会调用StreamingFunctionUtils.snapshotFunctionState(context,getOperatorStateBackend(),
userFunction)方法执行函数中的状态快照操作。

  1. 向snapshotInProgress中指定KeyedStateRawFuture和OperatorStateRawFuture,专门用于处理原生状态数据的快照操作
  • 如果operatorStateBackend不为空,则将operatorStateBackend.snapshot()方法块设定到OperatorStateManagedFuture中,并注册到snapshotInProgress中等待执行。
  • 如果keyedStateBackend不为空,则将keyedStateBackend.snapshot()方法块设定到KeyedStateManagedFuture中,并注册到snapshotInProgress中等待执行。
  1. 返回创建的snapshotInProgress异步Future对象,snapshotInProgress中封装了当前算子需要执行的所有快照操作。
public final OperatorSnapshotFutures snapshotState(long checkpointId, 
                                                   long timestamp, 
                                                   CheckpointOptions 
                                                   checkpointOptions,
                                                   CheckpointStreamFactory factory
                                                   ) throws Exception {
      // 获取KeyGroupRange
   KeyGroupRange keyGroupRange = null != keyedStateBackend ?
         keyedStateBackend.getKeyGroupRange() : KeyGroupRange.EMPTY_KEY_GROUP_
            RANGE;
      // 创建OperatorSnapshotFutures处理对象
   OperatorSnapshotFutures snapshotInProgress = new OperatorSnapshotFutures();
      // 创建snapshotContext上下文对象
   StateSnapshotContextSynchronousImpl snapshotContext = 
   new StateSnapshotContextSynchronousImpl(
      checkpointId,
      timestamp,
      factory,
      keyGroupRange,
      getContainingTask().getCancelables());
   try {
      snapshotState(snapshotContext);
      // 设定KeyedStateRawFuture和OperatorStateRawFuture
      snapshotInProgress
      .setKeyedStateRawFuture(snapshotContext.getKeyedStateStreamFuture());
      snapshotInProgress
      .setOperatorStateRawFuture(snapshotContext.getOperatorStateStreamFuture());
            // 如果operatorStateBackend不为空,设定OperatorStateManagedFuture
      if (null != operatorStateBackend) {
         snapshotInProgress.setOperatorStateManagedFuture(
            operatorStateBackend
            .snapshot(checkpointId, timestamp, factory, checkpointOptions));
      }
      // 如果keyedStateBackend不为空,设定KeyedStateManagedFuture
      if (null != keyedStateBackend) {
         snapshotInProgress.setKeyedStateManagedFuture(
            keyedStateBackend
            .snapshot(checkpointId, timestamp, factory, checkpointOptions));
      }
   } catch (Exception snapshotException) {
    // 此处省略部分代码
   }
   return snapshotInProgress;
}

这里可以看出,原生状态和管理状态的RunnableFuture对象会有所不同

  • RawState主要通过从snapshotContext中获取的RawFuture对象 管理状态的快照操作
  • ManagedState主要通过operatorStateBackend和keyedStateBackend进行状态的管理,并根据StateBackend的不同实现将状态数据写入内存或外部文件系统中。

 

1.4. 算子状态进行快照

我们知道所有的状态快照操作都会被封装到OperatorStateManagedFuture对象中,最终通过AsyncCheckpointRunnable线程触发执行。

下面我们看AsyncCheckpointRunnable线程的定义。如代码所示,AsyncCheckpointRunnable.run()方法主要逻辑如下。

  1. 调用FileSystemSafetyNet.initializeSafetyNetForThread()方法为当前线程初始化文件系统安全网,确保数据能够正常写入。
  2. 创建TaskStateSnapshot实例:

创建jobManagerTaskOperatorSubtaskStates和localTaskOperatorSubtaskStates对应的TaskStateSnapshot实例,其中jobManagerTaskOperatorSubtaskStates用于存储和记录发送给JobManager的Checkpoint数据,localTaskOperatorSubtaskStates用于存储TaskExecutor本地的状态数据。

  1. 执行所有状态快照线程操作

遍历operatorSnapshotsInProgress集合,获取OperatorSnapshotFutures并创建OperatorSnapshotFinalizer实例,用于执行所有状态快照线程操作。在OperatorSnapshotFinalizerz中会调用FutureUtils.runIfNotDoneAndGet()方法执行KeyedState和OperatorState的快照操作。

  1. 从finalizedSnapshots中获取JobManagerOwnedState和TaskLocalState,分别存储在jobManagerTaskOperatorSubtaskStates和localTaskOperatorSubtaskStates集合中。
  2. 调用checkpointMetrics对象记录Checkpoint执行的时间并汇总到Metric监控系统中。
  3. 如果AsyncCheckpointState为COMPLETED状态,则调用reportCompletedSnapshotStates()方法向JobManager汇报Checkpoint的执行结果。
  4. 如果出现其他异常情况,则调用handleExecutionException()方法进行处理。
public void run() {
   FileSystemSafetyNet.initializeSafetyNetForThread();
   try {
      // 创建TaskStateSnapshot
      TaskStateSnapshot jobManagerTaskOperatorSubtaskStates =
         new TaskStateSnapshot(operatorSnapshotsInProgress.size());
      TaskStateSnapshot localTaskOperatorSubtaskStates =
         new TaskStateSnapshot(operatorSnapshotsInProgress.size());
      for (Map.Entry<OperatorID, OperatorSnapshotFutures> entry : 
           operatorSnapshotsInProgress.entrySet()) {
         OperatorID operatorID = entry.getKey();
         OperatorSnapshotFutures snapshotInProgress = entry.getValue();
         // 创建OperatorSnapshotFinalizer对象
         OperatorSnapshotFinalizer finalizedSnapshots =
            new OperatorSnapshotFinalizer(snapshotInProgress);
         jobManagerTaskOperatorSubtaskStates.putSubtaskStateByOperatorID(
            operatorID,
            finalizedSnapshots.getJobManagerOwnedState());
         localTaskOperatorSubtaskStates.putSubtaskStateByOperatorID(
            operatorID,
            finalizedSnapshots.getTaskLocalState());
      }
      final long asyncEndNanos = System.nanoTime();
      final long asyncDurationMillis = (asyncEndNanos - asyncStartNanos) / 1_000_000L;
      checkpointMetrics.setAsyncDurationMillis(asyncDurationMillis);
      if (asyncCheckpointState.compareAndSet(
          CheckpointingOperation.AsyncCheckpointState.RUNNING,
         CheckpointingOperation.AsyncCheckpointState.COMPLETED)) {
         reportCompletedSnapshotStates(
            jobManagerTaskOperatorSubtaskStates,
            localTaskOperatorSubtaskStates,
            asyncDurationMillis);
      } else {
         LOG.debug("{} - asynchronous part of checkpoint {} could not be 
            completed because it was closed before.",
            owner.getName(),
            checkpointMetaData.getCheckpointId());
      }
   } catch (Exception e) {
      handleExecutionException(e);
   } finally {
      owner.cancelables.unregisterCloseable(this);
      FileSystemSafetyNet.closeSafetyNetAndGuardedResourcesForThread();
   }
}

至此,算子状态数据快照的逻辑基本完成,算子中的托管状态主要借助KeyedStateBackend和OperatorStateBackend管理。

KeyedStateBackend和OperatorStateBackend都实现了SnapshotStrategy接口,提供了状态快照的方法。SnapshotStrategy根据不同类型存储后端,主要有HeapSnapshotStrategy和RocksDBSnapshotStrategy两种类型。

 

1.5. 状态数据快照持久化

这里我们以HeapSnapshotStrategy为例,介绍在StateBackend中对状态数据进行状态快照持久化操作的步骤。如代码所示,

HeapSnapshotStrategy.processSnapshotMetaInfoForAllStates()方法中定义了对KeyedState以及OperatorState的状态处理逻辑。

  1. 遍历每个StateSnapshotRestore。
  2. 调用StateSnapshotRestore.stateSnapshot()方法,此时会创建StateSnapshot对象。
  3. 将创建的StateSnapshot添加到metaInfoSnapshots和cowStateStableSnapshots集合中,完成堆内存存储类型KvState的快照操作。
private void processSnapshotMetaInfoForAllStates(
   List metaInfoSnapshots,
   Map<StateUID, StateSnapshot> cowStateStableSnapshots,
   Map<StateUID, Integer> stateNamesToId,
   Map<String, ? extends StateSnapshotRestore> registeredStates,
   StateMetaInfoSnapshot.BackendStateType stateType) {
   for (Map.Entry<String, ? extends StateSnapshotRestore> kvState :
        registeredStates.entrySet()) {
      final StateUID stateUid = StateUID.of(kvState.getKey(), stateType);
      stateNamesToId.put(stateUid, stateNamesToId.size());
      StateSnapshotRestore state = kvState.getValue();
      if (null != state) {
         final StateSnapshot stateSnapshot = state.stateSnapshot();
         metaInfoSnapshots.add(stateSnapshot.getMetaInfoSnapshot());
         cowStateStableSnapshots.put(stateUid, stateSnapshot);
      }
   }
}

 

二. CheckpointCoordinator管理Checkpoint

1. Checkpoint执行完毕后的确认过程

当StreamTask中所有的算子完成状态数据的快照操作后,Task实例会立即将TaskStateSnapshot消息发送到管理节点的CheckpointCoordinator中,并在CheckpointCoordinator中完成后续的操作。如图所示,Checkpoint执行完毕后的确认过程如下。

在这里插入图片描述

  1. 调用StreamTask.reportCompletedSnapshotStates

当StreamTask中的所有算子都完成快照操作后,会调用StreamTask.reportCompletedSnapshotStates()方法将TaskStateSnapshot等Ack消息发送给TaskStateManager。TaskStateManager封装了CheckpointCoordinatorGateway,因此可以直接和CheckpointCoordinator组件进行RPC通信。

  1. 消息传递
  • 将消息传递给CheckpointCoordinatorGateway
    TaskStateManager通过CheckpointResponder.acknowledgeCheckpoint()方法将acknowledgedTaskStateSnapshot消息传递给CheckpointCoordinatorGateway接口实现者,实际上就是JobMasterRPC服务。
  • 消息传递给CheckpointCoordinator
    JobMaster接收到RpcCheckpointResponder返回的Ack消息后,会调用SchedulerNG.acknowledgeCheckpoint()方法将消息传递给调度器。调度器会将Ack消息封装成AcknowledgeCheckpoint,传递给CheckpointCoordinator组件继续处理。
  1. 管理PendingCheckpoint

当CheckpointCoordinator接收到AcknowledgeCheckpoint后,会从pendingCheckpoints集合中获取对应的PendingCheckpoint,然后判断当前Checkpoint中是否收到AcknowledgedTasks集合所有的Task实例发送的Ack确认消息。
如果notYetAcknowledgedTasks为空,则调用completePendingCheckpoint()方法完成当前PendingCheckpoint操作,并从pendingCheckpoints集合中移除当前的PendingCheckpoint。

  1. 添加CompletedCheckpoint:

紧接着,PendingCheckpoint会转换成CompletedCheckpoint,此时CheckpointCoordinator会在completedCheckpointStore集合中添加CompletedCheckpoint。

  1. 通知Checkpoint操作结束。

CheckpointCoordinator会遍历tasksToCommitTo集合中的ExecutionVertex节点并获取Execution对象,然后通过Execution向TaskManagerGateway发送CheckpointComplete消息,通知所有的Task实例本次Checkpoint操作结束。

  1. 通知同步

当TaskExecutor接收到CheckpointComplete消息后,会从TaskSlotTable中获取对应的Task实例,向Task实例中发送CheckpointComplete消息。所有实现CheckpointListener监听器的组件或算子都会获取Checkpoint完成的消息,然后完成各自后续的处理操作。

 

2. 触发并完成Checkpoint操作

CheckpointCoordinator组件接收到Task实例的Ack消息(快照完成了?)后,会触发并完成Checkpoint操作。如代码PendingCheckpoint.finalizeCheckpoint()方法的具体实现如下。

1)向sharedStateRegistry中注册operatorStates。
2)结束pendingCheckpoint中的Checkpoint操作并生成CompletedCheckpoint3)将completedCheckpoint添加到completedCheckpointStore中,
4)从pendingCheckpoint中移除checkpointId对应的PendingCheckpoint,
并触发队列中的Checkpoint请求。
5)向所有的ExecutionVertex节点发送CheckpointComplete消息,
通知Task实例本次Checkpoint操作完成。



private void completePendingCheckpoint(PendingCheckpoint pendingCheckpoint) 
   throws CheckpointException {
   final long checkpointId = pendingCheckpoint.getCheckpointId();
   final CompletedCheckpoint completedCheckpoint;
   // 首先向sharedStateRegistry中注册operatorStates
   Map<OperatorID, OperatorState> operatorStates = 
      pendingCheckpoint.getOperatorStates();
   sharedStateRegistry.registerAll(operatorStates.values());
   // 对pendingCheckpoint中的Checkpoint做结束处理并生成CompletedCheckpoint
   try {
      try {
         completedCheckpoint = pendingCheckpoint.finalizeCheckpoint();
         failureManager.handleCheckpointSuccess(pendingCheckpoint.
            getCheckpointId());
      }
      catch (Exception e1) {
         // 如果出现异常则中止运行并抛出CheckpointExecution
         if (!pendingCheckpoint.isDiscarded()) {
             failPendingCheckpoint(pendingCheckpoint,
                                   CheckpointFailureReason.FINALIZE_CHECKPOINT_
                                        FAILURE, e1);
         }
         throw new CheckpointException("Could not finalize the pending 
                                       checkpoint " +
                                       checkpointId + '.',
                                       CheckpointFailureReason
                                       .FINALIZE_CHECKPOINT_FAILURE, e1);
      }
      // 当完成finalization后,PendingCheckpoint必须被丢弃
      Preconditions.checkState(pendingCheckpoint.isDiscarded() 
                               && completedCheckpoint != null);
      // 将completedCheckpoint添加到completedCheckpointStore中
      try {
         completedCheckpointStore.addCheckpoint(completedCheckpoint);
      } catch (Exception exception) {
         // 如果completed checkpoint存储出现异常则进行清理
         executor.execute(new Runnable() {
            @Override
            public void run() {
               try {
                  completedCheckpoint.discardOnFailedStoring();
               } catch (Throwable t) {
                  LOG.warn("Could not properly discard completed checkpoint {}.",
                           completedCheckpoint.getCheckpointID(), t);
               }
            }
         });
         throw new CheckpointException("Could not complete the pending 
                                       checkpoint " + 
                                       checkpointId + '.', 
                                       CheckpointFailureReason.
                                       FINALIZE_CHECKPOINT_FAILURE, exception);
      }
   } finally {
      // 最后从pendingCheckpoints中移除checkpointId对应的PendingCheckpoint
      pendingCheckpoints.remove(checkpointId);
      // 触发队列中的Checkpoint请求
      triggerQueuedRequests();
   }
   // 记录checkpointId
   rememberRecentCheckpointId(checkpointId);
   // 清除之前的Checkpoints
   dropSubsumedCheckpoints(checkpointId);
   // 计算和前面Checkpoint操作之间的最低延时
   lastCheckpointCompletionRelativeTime = clock.relativeTimeMillis();
   LOG.info("Completed checkpoint {} for job {} ({} bytes in {} ms).", 
            checkpointId, job,
            completedCheckpoint.getStateSize(), completedCheckpoint.getDuration());
   // 通知所有的ExecutionVertex节点Checkpoint操作完成
   final long timestamp = completedCheckpoint.getTimestamp();
   for (ExecutionVertex ev : tasksToCommitTo) {
      Execution ee = ev.getCurrentExecutionAttempt();
      if (ee != null) {
          ee.notifyCheckpointComplete(checkpointId, timestamp);
      }
   }
}

 

3. 通知CheckpointComplete给TaskExecutor

当TaskExecutor接收到来自CheckpointCoordinator的CheckpointComplete消息后,会调用Task.notifyCheckpointComplete()方法将消息传递到指定的Task实例中。Task线程会将CheckpointComplete消息通知给StreamTask中的算子。

如下代码,

/**
将notifyCheckpointComplete()转换成RunnableWithException线程并提交到Mailbox中运行,且在MailboxExecutor线程模型中获取和执行的优先级是最高的。
最终notifyCheckpointComplete()方法会在MailboxProcessor中运行。
**/

public Future<Void> notifyCheckpointCompleteAsync(long checkpointId) {
   return mailboxProcessor.getMailboxExecutor(TaskMailbox.MAX_PRIORITY).submit(
      () -> notifyCheckpointComplete(checkpointId),
      "checkpoint %d complete", checkpointId);
}

继续具体看StreamTask.notifyCheckpointComplete(),如下代码:

1)获取当前Task中算子链的算子,并发送Checkpoint完成的消息。
2)获取TaskStateManager对象,向其通知Checkpoint完成消息,这里主要调用
TaskLocalStateStore清理本地无用的Checkpoint数据。
3)如果当前Checkpoint是同步的Savepoint操作,直接完成并终止当前Task实例,并调用
resetSynchronousSavepointId()方法将syncSavepointId重置为空。

private void notifyCheckpointComplete(long checkpointId) {
   try {
      boolean success = actionExecutor.call(() -> {
         if (isRunning) {
            LOG.debug("Notification of complete checkpoint for task {}", 
               getName());
            // 获取当前Task中operatorChain所有的Operator,并通知每个Operator 
               Checkpoint执行成功的消息
            for (StreamOperator<?> operator : operatorChain.getAllOperators()) {
               if (operator != null) {
                  operator.notifyCheckpointComplete(checkpointId);
               }
            }
            return true;
         } else {
            LOG.debug("Ignoring notification of complete checkpoint for 
               not-running task {}", getName());
            return true;
         }
      });
      // 获取TaskStateManager,并通知Checkpoint执行完成的消息
      getEnvironment().getTaskStateManager().notifyCheckpointComplete(checkpointId);
      // 如果是同步的Savepoint操作,则直接完成当前Task
      if (success && isSynchronousSavepointId(checkpointId)) {
         finishTask();
         // Reset to "notify" the internal synchronous savepoint mailbox loop.
         resetSynchronousSavepointId();
      }
   } catch (Exception e) {
      handleException(new RuntimeException("Error while confirming checkpoint", e));
   }
}

算子接收到Checkpoint完成消息后,会根据自身需要进行后续的处理,默认在AbstractStreamOperator基本实现类中会通知keyedStateBackend进行后续操作。

对于AbstractUdfStreamOperator实例,会判断当前userFunction是否实现了CheckpointListener,如果实现了,则向UserFucntion通知Checkpoint执行完成的信息

例如在FlinkKafkaConsumerBase中会通过获取到的Checkpoint完成信息,将Offset提交至Kafka集群,确保消费的数据已经完成处理,详细实现可以参考FlinkKafkaConsumerBase.notifyCheckpointComplete()方法。

public void notifyCheckpointComplete(long checkpointId) throws Exception {
   super.notifyCheckpointComplete(checkpointId);
   if (userFunction instanceof CheckpointListener) {
      ((CheckpointListener) userFunction).notifyCheckpointComplete(checkpointId);
   }
}

 

参考:《Flink设计与实现:核心原理与源码解析》–张利兵

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/397763.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

什么是伪数组 以及伪数组转真数组的方法

什么是伪数组呢&#xff1f; 1.我们先来看看用于接受实参的方法 arguments , 执行代码如下&#xff1a; function fn() { console.log(arguments);}fn(1,2,3,4,5) 这里可以看到&#xff0c;Arguments显示的也有方括号 [1,2,3,4,5...] &#xff0c;但是后面多了一些其他方法&a…

c++类和对象新手保姆级上手教学(中)

前言&#xff1a; 类和对象中篇&#xff0c;这里讲到的前4个默认成员函数&#xff0c;是类和对象中的重难点&#xff0c;许多资料上的讲法都非常抽象&#xff0c;难以理解&#xff0c;所以我作出这篇总结&#xff0c;分享学习经验&#xff0c;以便日后复习。 目录 6个默认成员…

新算法UoT助力AI提问——主动寻求信息,任务完成率提高57.8%

引言&#xff1a;信息寻求在不确定性环境中的重要性 在不确定性环境中&#xff0c;信息寻求的能力至关重要。在许多实际应用中&#xff0c;如医学诊断和故障排除&#xff0c;解决任务所需的信息并非一开始就给出&#xff0c;而需要通过提问后续问题来主动寻求&#xff08;例如…

MobaXterm的SFTP文件上传/下载

一、MobaXterm的简介 MobaXterm是一款功能强大的远程计算工具&#xff0c;集成了诸多网络工具和便利功能&#xff0c;包括SSH、X11服务器、SFTP等&#xff0c;支持Windows系统。用户可以使用MobaXterm来轻松管理远程服务器&#xff0c;进行文件传输&#xff0c;远程桌面显示等操…

Rocky 8.9 Kubespray v2.24.0 在线部署 kubernetes v1.28.6 集群

文章目录 1. 简介2. 预备条件3. 基础配置3.1 配置hostname3.2 配置互信 4. 配置部署环境4.1 在线安装docker4.2 启动容器 kubespray4.3 编写 inventory.ini4.4 关闭防火墙、swap、selinux4.5 配置内核模块 5. 部署 1. 简介 kubespray​ 是一个用于部署和管理 Kubernetes 集群的…

掌握array_walk()函数:解锁PHP数组操作的神奇力量!

掌握array_walk()函数&#xff1a;解锁PHP数组操作的神奇力量&#xff01; 在 PHP 开发过程中&#xff0c;我们经常需要对数组进行遍历和处理。array_walk() 函数是 PHP 函数库中的一个重要工具&#xff0c;它提供了一种便捷的方式来对数组中的每个元素执行自定义操作。本文将深…

【EI会议征稿通知】2024年第四届计算机视觉与模式分析国际学术大会(ICCPA 2024)

2024年第四届计算机视觉与模式分析国际学术大会&#xff08;ICCPA 2024&#xff09; 2024 4th International Conference on Computer Vision and Pattern Analysis (ICCPA 2024) 第四届计算机视觉与模式分析国际会议&#xff08;ICCPA 2024&#xff09;将于2024年5月17日至1…

Unity编辑器扩展之是否勾选Text组件BestFit选项工具(此篇教程也可以操作其他组件的属性)

想要批量化是否勾选项目预制体资源中Text组件BestFit属性&#xff08;此篇教程也可以操作其他组件的属性&#xff0c;只不过需要修改其中对应的代码&#xff09;&#xff0c;可以采用以下步骤。 1、在项目的Editor文件中&#xff0c;新建一个名为TextBestFitBatchProcessor的…

忘记管理员密码

1、在/home/jenkins/config.xml中删除&#xff1a; <useSecurity>true</useSecurity><authorizationStrategy class"hudson.security.FullControlOnceLoggedInAuthorizationStrategy"><denyAnonymousReadAccess>false</denyAnonymousRea…

html+css+jquery实现轮播图自动切换、左右切换、点击切换

pc端也好、移动端也好&#xff0c;轮播图很常见&#xff0c;今天用htmlcssjquery实现小米商城轮播图&#xff0c;套UI框架更容易实现 步骤1&#xff1a;把静态轮播图用divcss布局出来&#xff0c;采用盒子模型、相对绝对定位实现 代码如下&#xff1a; <!doctype html>…

leetcode:无重复字符的最长字串(详解)

文章目录 一、题目描述&#xff1f;二、题解方案一&#xff1a;容易理解&#xff08;时间复杂度O(n)&#xff09;方案二&#xff1a;滑动窗口&#xff08;时间复杂度O(n)&#xff09; 一、题目描述&#xff1f; 给定一个字符串 s &#xff0c;请你找出其中不含有重复字符的 最…

十二:枚举与注解

文章目录 01、枚举类的使用1.1、枚举类的理解1.2、自定义枚举类1.3、使用enum关键字定义枚举类1.4、Enum类中的常用方法1.5、使用enum关键字定义的枚举类实现接口 02、注解的使用2.1、注解的理解2.3、如何自定义注解2.4、jdk中4个基本的元注解的使用12.5、jdk中4个基本的元注解…

补-代码随想录第23天|● 669. 修剪二叉搜索树 ● 108.将有序数组转换为二叉搜索树 ● 538.把二叉搜索树转换为累加树

二叉树最后一天 ● 669. 修剪二叉搜索树思路一&#xff1a;递归递归三部曲代码&#xff1a; 思路二&#xff1a;迭代代码&#xff1a; ● 108.将有序数组转换为二叉搜索树思路&#xff1a;递归代码;[左闭右闭] ● 538.把二叉搜索树转换为累加树思路&#xff1a;递归 代码&#…

java基础训练题(2)

一、题目 1. 以下程序输出&#xff08;D&#xff09; public static void main(String[] args) {int num 2;switch (num) {case 1:num;case 2:num;case 3:num;default:num;break;}System.out.println(num);} } A&#xff1a;2 B&#xff1a;3 C&#xff1a;4 D&#xff…

解决本地googleapis 谷歌统计 nodejs 遇到 ECONNRESET和 ETIMEDOUT

在本地通过谷歌分析接口, 获取网站的访问量统计, 用于在管理端面板世界地图显示 获取分析数据的部分代码,这部分很简单示例有 // 获得前10个页面浏览量与页面标题在过去30天 const {BetaAnalyticsDataClient} require(google-analytics/data); const analyticsDataClient ne…

62-JS-canvas画布高斯模糊之图像操作

将一张图片放到canvas画布上 1.绘制图像drawImage <img src="./3.webp" alt=""><canvas></canvas><script>var canvas = document.getElementsByTagName("canvas")[0];canvas.width = 500;canvas.height = 500;var a …

“薪”的一年程序员裁员潮技术变革情况下 程序员就业机会在哪里?

引言&#xff1a;一对来自中国的工程师夫妻在美国的不幸身亡&#xff0c;疑似与谷歌的裁员有关&#xff0c;这一事件再次引发了人们对技术变革下裁员对程序员影响的关注。 一、针对裁员潮的一些看法 在我看来&#xff0c;技术变革对程序员的影响是双面的。一方面&#xff0c;…

anomalib1.0学习纪实-续3:结合python lightning理思路

一、python lightning python lightning是个好东西&#xff0c;但不见得那么友好。 GPT4给我讲解了他的用法&#xff1a; 二、anomalib的思路 1、 创建一个Lightning Module。 首先&#xff0c;在src\anomalib\models\components\base\anomaly_module.py中&#xff0c; cl…

你真的了解—————NumPy吗

&#x1f308;个人主页&#xff1a;小田爱学编程 &#x1f525; 系列专栏&#xff1a;opencv &#x1f3c6;&#x1f3c6;关注博主&#xff0c;随时获取更多关于IT的优质内容&#xff01;&#x1f3c6;&#x1f3c6; &#x1f600;欢迎来到小田代码世界~ &#x1f601; 喜欢的…

2024-02-19(Flume,DataX)

1.flume中拦截器的作用&#xff1a;个人认为就是修改或者删除事件中的信息&#xff08;处理一下事件&#xff09;。 2.一些拦截器 Host Interceptor&#xff0c;Timestamp Interceptor&#xff0c;Static Interceptor&#xff0c;UUID Interceptor&#xff0c;Search and Rep…