【Java多线程】线程安全问题与解决方案

目录

1、线程安全问题

1.2、线程安全原因

2、线程加锁

2.1、synchronized 关键字

2.2、完善代码

2.3、对同一个线程的加锁操作 

3、内容补充

3.1、内存可见性问题 

3.2、指令重排序问题

3.3、解决方法

3.4、总结 volatile 关键字

1、线程安全问题

  • 某个代码,无论是单线程下执行还是多线程下执行都不会产生bug,被称之为“线程安全”
  • 如果在单线程下执行正确,但是多线程下会产生bug,被称之为“线程不安全”或者“存在线程安全问题”

线程安全问题的典型例子

public class ThreadDemo {
    private static int count = 0;

    public static void main(String[] args) throws InterruptedException {
        // 创建两个线程. 每个线程都针对上述 count 变量循环自增 50w 次
        Thread t1 = new Thread(() -> {
            for (int i = 0; i < 500000; i++) {
                count++;
            }
        });
        Thread t2 = new Thread(() -> {
            for (int i = 0; i < 500000; i++) {
                count++;
            }
        });
        t1.start();
        t2.start();

        t1.join();
        t2.join();
        System.out.println("count = " + count);
    }
}

        按照正常逻辑来看这段代码,结果应该是100w,但是通过多次运行发现这里给的却是一个50w到100w的随机值, 这就是因为出现了线程安全问题导致的结果错误。

问题分析:

count++操作实际上分成三步:

1)load 从内存中读取数据到cpu的寄存器

2)add 把寄存器中的值+1

3)save 把寄存器的值写回内存中

        而由于线程调度是随机调度,抢占式执行的,这就导致了两个线程的count++操作三步骤是会被打乱顺序的。

        例如 t1 线程先执行到 1)的同时, t2 线程也刚好随机调度开始执行 1),导致t1 和 t2 读取到的数据都是0,此时 t1 线程对 寄存器中值0+1,并将 1 写回内存中,接着 t2 也执行相同操作,再次将 1 写回内存中。此时就出现了线程安全问题,两次count++却只让count自增了1次。这就是这段代码为什么不是100w的原因细节。

1.2、线程安全原因

透过两个线程分别对count++,可以看到线程的不安全,有以下原因
1、根本原因,操作系统上线程的调度策略是“随机调度,抢占式执行”的,这就给线程之间执行的顺序带来了很多的变数。是线程安全问题的“罪魁祸首”。
2、代码结构问题,代码中多个线程同时修改一个变量。
3、直接原因,上述多线程修改操作,本身不是“原子的”,即实际count++操作又被分成了三步操作。如果操作本身是“原子的”,那么它要么执行,要么不执行,就不会出现执行一半,就被调度走,让其他线程“可乘之机”。

  • 针对原因1,系统底层对调度线程的逻辑就是随机调度,抢占式执行,无法干预做出任何调整。
  • 针对原因2,代码结构问题有时候是需求决定的,并不是每次都可以从这里入手,因此对于原因2也不好调整。
  • 针对原因3,既然操作非“原子的”,那么可以通过一些特殊手段将其打包成为“整体”,这也是我们接下来要讲到的加锁

2、线程加锁

2.1、synchronized 关键字

其中 locker 可以是任意对象,进入 synchronized 修饰的代码块, 相当于加锁,退出 synchronized 修饰的代码块, 相当解锁。

如果一个线程,针对一个对象加上锁之后,其他线程也尝试对这个对象加锁,就会导致锁竞争进而引起阻塞(BLOCKED),这个阻塞会一直持续到上一个线程释放锁为止。
如果是两个线程分别针对不同的对象进行加锁,此时不会由锁竞争,也就不会阻塞。

可以形象的理解成,每个对象在内存中存储的时候,都存有一块内存表示当前的 "锁定" 状态(类似于厕所的 "有人/无人")。

如果当前是 "无人" 状态,那么就可以使用,使用时需要设为 "有人" 状态。

如果当前是 "有人" 状态,那么其他人无法使用,只能排队。

2.2、完善代码

public class ThreadDemo {
    private static int count = 0;

    public static void main(String[] args) throws InterruptedException {
        // 随便创建个对象都行
        Object locker = new Object();

        // 创建两个线程. 每个线程都针对上述 count 变量循环自增 50w 次
        Thread t1 = new Thread(() -> {
            for (int i = 0; i < 500000; i++) {
                synchronized (locker) {   //对count++进行加锁操作,打包三步为一步
                    count++;
                }
            }
        });
        Thread t2 = new Thread(() -> {
            for (int i = 0; i < 500000; i++) {
                synchronized (locker) {   //对count++进行加锁操作,打包三步为一步
                    count++;
                }
            }
        });
        t1.start();
        t2.start();

        t1.join();
        t2.join();
        System.out.println("count = " + count);
    }
}

通过对count++的整体加锁,使得每一次的count++都是一个整体,解决了此处的线程安全问题。

2.3、对同一个线程的加锁操作 

public static void main(String[] args) {
    Object locker = new Object();
    Thread t = new Thread(() -> {
        synchronized (locker) {
            synchronized (locker) {
                System.out.println("hello synchronized");
            }
        }
    });
    t.start();
}

需要注意的是,这里最直观的感觉是进行了两次加锁,会发生锁冲突。第一次针对locker加锁之后,在还没释放锁的时候又尝试对locker加锁,理论会出现锁冲突,但是这里却可以正常打印。

最关键的问题在于,【Java中的锁是可重入锁】这两次加锁,其实是在同一个线程中进行的,如果是同一个线程对同一个锁的多次加锁,是不会冲突的。

3、内容补充

当然,还有其他能够导致出现线程安全问题的原因:内存可见性问题以及指令重排序问题

3.1、内存可见性问题 

下列代码原本用意是:当用户输入非0数字时,结束线程t1。 

package thread;

import java.util.Scanner;

public class ThreadDemo {
    private static int flag = 0;   

    public static void main(String[] args) {
        Thread t1 = new Thread(() -> {
            while (flag == 0) {
                // 循环体里, 啥都不写会触发内存可见性问题
            }
            System.out.println("t1 线程结束!");
        });

        Thread t2 = new Thread(() -> {
            System.out.println("请输入 flag 的值: ");
            Scanner scanner = new Scanner(System.in);
            flag = scanner.nextInt();
        });

        t1.start();
        t2.start();
    }
}

实际运行结果时发现无法结束,t2修改了内存,但是t1内有看到这个内存的变化,就称之为“内存可见性”问题。出现这一问题是JVM的代码优化导致的。

t1 线程中的while语句每次循环是都有两个操作:

1、load 读取内存中 flag 的值到 cpu 寄存器中

2、拿到寄存器的值和 0 比较

上述循环中循环的执行速度非常之快,反复的执行1和2,即使是1秒也可能反复执行了几百万次。而在执行的过程中,有两个关键要点:

1、JVM识别到 load 操作执行的几百万次结果每次都一样(输入前的等待时间里)。

2、而由于 load 操作花费的开销远远超过剩余的其他操作(访问寄存器的操作速度远远超过访问内存)

每次循环可能就是百分之九十九的时间都消耗在 load 操作上,而百分之一的时间消耗在其他操作上,而且JVM发现每次 load 操作读取到的数据都是一样的,那么此时JVM就会认为此处每次 load 的操作是否有存在的必要呢,于是乎JVM就可能会自动执行了代码优化,将上述的 load 操作优化了(只有前几次进行了 load,后续发现 load 一直没有变化,分析代码也没发现哪里修改了flag,因此激进的将load操作优化成了直接使用寄存器中之前“缓存”的值),从而达到大幅度提高循环的执行速度的目的。

3.2、指令重排序问题

指令重排序也是编译器优化的一种方式。保证逻辑不变的前提下,调整原有代码的执行顺序,提高程序的效率。

3.3、解决方法

由于上述两种问题都是由于JVM代码优化导致的

Java提供的 volatile 关键字就可以使上述的优化被强制关闭,可以确保每次循环条件都会重新从内存中读取数据。
强制读取内存,虽然开销大了,效率也低了,但是数据的准确性、逻辑的准确性都提高了。

只需要对 flag 添加一个 volatile 关键字即可解决这一问题。

3.4、总结 volatile 关键字

1、保证内存可见性,每次访问变量必须都要重新读取内存,而不会优化到寄存器/缓存中
2、禁止指令重排序,针对被 volatile 修饰的变量的读写操作相关指令,是不能被重排序的。

【博主推荐】

【Java多线程】Thread类的基本用法-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/zzzzzhxxx/article/details/136121421?spm=1001.2014.3001.5501 【Java多线程】对进程与线程的理解-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/zzzzzhxxx/article/details/136115808?spm=1001.2014.3001.5501

【数据结构】二叉树的三种遍历(非递归讲解)-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/zzzzzhxxx/article/details/136044643?spm=1001.2014.3001.5501

如果觉得作者写的不错,求给博主一个大大的点赞支持一下,你们的支持是我更新的最大动力!

如果觉得作者写的不错,求给博主一个大大的点赞支持一下,你们的支持是我更新的最大动力!

如果觉得作者写的不错,求给博主一个大大的点赞支持一下,你们的支持是我更新的最大动力!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/397074.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

2023年全球前端大技术大会(GMTC北京站2023):核心内容与学习收获(附大会核心PPT下载)

此次峰会是一次内容丰富、有深度和广度的技术盛会。参会者不仅可以了解前端技术的最新发展和未来趋势&#xff0c;还可以与业界专家交流心得&#xff0c;提升自己的技能和能力。同时&#xff0c;此次大会也促进了全球前端社区的交流和合作&#xff0c;推动了前端技术的创新和发…

DP读书:《openEuler操作系统》(十)套接字 Socket 数据传输的基本模型

10min速通Socket 套接字简介数据传输基本模型1.TCP/IP模型2.UDP模型 套接字类型套接字&#xff08;Socket&#xff09;编程Socket 的连接1.连接概述(1)基本概念(2)连接状态(3)连接队列 2.建立连接3.关闭连接 socket 编程接口介绍数据的传输1. 阻塞与非阻塞2. I/O复用 数据的传输…

【数据分享】2014-2024年全国监测站点的逐时空气质量数据(15个指标\Excel\Shp格式)

空气质量的好坏反映了空气的污染程度&#xff0c;在各项涉及城市环境的研究中&#xff0c;空气质量都是一个十分重要的指标。空气质量是依据空气中污染物浓度的高低来判断的。 我们发现学者王晓磊在自己的主页里面分享了2014年5月以来的全国范围的到站点的逐时的空气质量数据&…

绝地求生:四大成长武器 满级效果好到爆 钱包真保不住了

刚才看了上手时机视频 说真的这次的四大成长皮肤 只能说是好看到爆啊 小伙伴们&#xff0c;这次过年的路费 可能就要被冲没有了 先来看看悟空的武器特写吧&#xff01; 悟空的皮肤是M24成长皮肤 也是不错 炫酷的很哦 仔细看枪托的细节 是由紧箍咒的形状哦&#xff0c;这下…

Flink Catalog 解读与同步 Hudi 表元数据的最佳实践

博主历时三年精心创作的《大数据平台架构与原型实现&#xff1a;数据中台建设实战》一书现已由知名IT图书品牌电子工业出版社博文视点出版发行&#xff0c;点击《重磅推荐&#xff1a;建大数据平台太难了&#xff01;给我发个工程原型吧&#xff01;》了解图书详情&#xff0c;…

【C语言的小角落】逻辑与逻辑或混合计算

关注小庄 顿顿解馋(≧◡≦) 引言&#xff1a;本篇博客小庄带领小伙伴们解决一个比较角落有时头疼的问题—关于逻辑与和逻辑或结合运算的问题&#xff0c;请放心食用~ 我们先放代码说话 int main() {int x 1;int y 3;int z 4;if(x1 || y && z){;} printf("y …

自动驾驶中之定位总结

1 前言2 典型的单个定位方式2.1 基于通信的定位方法2.1.1 GNSS 全球卫星导航系统2.1.1.1 gnss的优点与缺点2.1.1.2 gnss定位技术2.1.1.2.1 RTK定位技术2.1.1.2.2 PPP定位技术 2.1.1.2 gnss定位技术总结 2.1.2 车联网定位 2.1 基于航位推算的定位方法2.1.1 惯性测试单元定位IMU2…

unity 使用VS Code 开发,VS Code配置注意事项

vscode 对应的插件&#xff08;unity开发&#xff09; 插件&#xff1a;.Net Install Tool,c#,c# Dev Kit,IntelliCode For C# Dev Kit,Unity,Unity Code Snippets 本人现在是用了这些插件 unity需要安装Visual Studio Editor 1、.Net Install Tool 设置 需要在设置里面配置…

美容小程序:让预约更简单,服务更贴心

在当今繁忙的生活节奏中&#xff0c;美容预约常常令人感到繁琐和疲惫。为了解决这个问题&#xff0c;许多美容院和SPA中心已经开始采用美容小程序来简化预约流程&#xff0c;并提供更加贴心的服务。在这篇文章中&#xff0c;我们将引导您了解如何制作一个美容小程序&#xff0c…

网络安全--网鼎杯2018漏洞复现(二次注入)

一、环境&#xff1a;在线测试平台 BUUCTF在线评测 (buuoj.cn) 二、进入界面先尝试万能账号 1or11# 换格式 hais1bux1 11or11# 三、万能的不行那我们就得想注册了&#xff0c;去register.php去看看 注册个账号 发现用户名回显&#xff0c;猜测考点为用户名处二次注入&…

Stable Diffusion WebUI 界面介绍

本文收录于《AI绘画从入门到精通》专栏&#xff0c;专栏总目录&#xff1a;点这里。 大家好&#xff0c;我是水滴~~ 本文主要对 Stable Diffusion WebUI 的界面进行简单的介绍&#xff0c;让你对该 WebUI 有个大致的了解&#xff0c;为后面的深入学习打下一个基础。主要内容包…

算法沉淀——BFS 解决拓扑排序(leetcode真题剖析)

算法沉淀——BFS 解决拓扑排序 01.课程表02.课程表 II03.火星词典 Breadth-First Search (BFS) 在拓扑排序中的应用主要是用来解决有向无环图&#xff08;DAG&#xff09;的拓扑排序问题。拓扑排序是对有向图中所有节点的一种线性排序&#xff0c;使得对于每一条有向边 (u, v)&…

网络防火墙综合实验

备注&#xff1a;电信网段15.1.1.0 移动网段14.1.1.0 办公区 11.1.1.0 生产区 10.1.1.0 服务区 13.1.1.0 公网 1.1.1.1 和 2.2.2.2 需求&#xff1a; 1、办公区设备可以通过电信链路和移动链路上网&#xff08;多对多nat&#xff0c;并且需要保留一个公网ip&#xff09; 2、…

第二证券:资金持续入场掘金成长板块

上证指数重回2900点、ETF成交活跃、科技股强势反弹……龙年首个交易日&#xff0c;在心情回暖、资金涌入的背景下&#xff0c;A股迎来开门红&#xff0c;组织也摩拳擦掌进行布局。 从仓位状况来看&#xff0c;私募排排网数据显现&#xff0c;到2月2日&#xff0c;私募全体仓位…

CPU设计之分支预测

1、引言 在之前的学习过程中&#xff0c;我们一直在假设程序是顺序执行的。PC每一次都默认4&#xff0c;一直这样周而复始。然而CPU就和人生一样&#xff0c;不可能一直一帆风顺的向前走。在某些场合我们总是需要做出决策&#xff0c;这些决策点&#xff0c;就像高速公路的一个…

litemall系统默认弱口令漏洞

免责声明&#xff1a;文章来源互联网收集整理&#xff0c;请勿利用文章内的相关技术从事非法测试&#xff0c;由于传播、利用此文所提供的信息或者工具而造成的任何直接或者间接的后果及损失&#xff0c;均由使用者本人负责&#xff0c;所产生的一切不良后果与文章作者无关。该…

Emlog博客网站快速搭建并结合内网穿透实现远程访问本地站点

文章目录 前言1. 网站搭建1.1 Emolog网页下载和安装1.2 网页测试1.3 cpolar的安装和注册 2. 本地网页发布2.1 Cpolar临时数据隧道2.2.Cpolar稳定隧道&#xff08;云端设置&#xff09;2.3.Cpolar稳定隧道&#xff08;本地设置&#xff09; 3. 公网访问测试总结 前言 博客作为使…

VMware还原Windows11 ghost镜像

文章目录 环境步骤准备制作启动iso文件创建虚拟机启动虚拟机还原Windows 参考 环境 Windows 11 家庭中文版VMware Workstation 17 Pro石大师装机大师Windows 11 ghost系统镜像 步骤 准备 下载好Windows 11 ghost系统镜像&#xff0c;我下载的文件是 FQ_WIN11_X64_VDL_V2080…

list链表

1. list基本概念 功能&#xff1a;将数据进行链式存储 链表&#xff08;list&#xff09;是一种物理存储单元上非连续的存储结构&#xff0c;数据元素的逻辑顺序是通过链表中的指针链接实现的 链表的组成&#xff1a;链表由一系列结点组成 结点的组成&#xff1a;一个是存储数据…

Go 是否有三元运算符?Rust 和 Python 是怎么做的?

嗨&#xff0c;大家好&#xff01;本文是系列文章 Go 技巧第十四篇&#xff0c;系列文章查看&#xff1a;Go 语言技巧。 今天来聊聊在 Go 语言中是否支持三元运算符。这个问题很简单&#xff0c;没有。 首先&#xff0c;什么是三元运算符&#xff1f; 在其他一些编程语言中&a…