基于深度学习的高精度道路瑕疵检测系统(PyTorch+Pyside6+YOLOv5模型)

摘要:基于深度学习的高精度道路瑕疵(裂纹(Crack)、检查井(Manhole)、网(Net)、裂纹块(Patch-Crack)、网块(Patch-Net)、坑洼块(Patch-Pothole)、坑洼(Pothole)等)检测系统可用于日常生活中或野外来检测与定位道路瑕疵目标,利用深度学习算法可实现图片、视频、摄像头等方式的目标检测,另外支持结果可视化与图片或视频检测结果的导出。本系统采用YOLOv5目标检测模型训练数据集,使用Pysdie6库来搭建页面展示系统,同时支持ONNX、PT等模型作为权重模型的输出。本系统支持的功能包括道路瑕疵训练模型的导入、初始化;置信分与IOU阈值的调节、图像上传、检测、可视化结果展示、结果导出与结束检测;视频的上传、检测、可视化结果展示、结果导出与结束检测;摄像头的上传、检测、可视化结果展示与结束检测;已检测目标列表、位置信息;前向推理用时。另外本道路瑕疵检测系统同时支持原始图像与检测结果图像的同时展示,原始视频与检测结果视频的同时展示。本博文提供了完整的Python代码和使用教程,适合新入门的朋友参考,完整代码资源文件请转至文末的下载链接。
在这里插入图片描述

基本介绍

近年来,机器学习和深度学习取得了较大的发展,深度学习方法在检测精度和速度方面与传统方法相比表现出更良好的性能。YOLOv5是单阶段目标检测算法YOLO的第五代,根据实验得出结论,其在速度与准确性能方面都有了明显提升,开源的代码可见https://github.com/ultralytics/yolov5。因此本博文利用YOLOv5检测算法实现一种高精度道路瑕疵检测模型,再搭配上Pyside6库写出界面系统,完成目标检测页面的开发。注意到YOLO系列算法的最新进展已有YOLOv6、YOLOv7、YOLOv8等算法,将本系统中检测算法替换为最新算法的代码也将在后面发布,欢迎关注收藏。

环境搭建

(1)下载完整文件到自己电脑上,然后使用cmd打开到文件目录
(2)利用Conda创建环境(Anacodna),conda create -n yolo5 python=3.8 然后安装torch和torchvision(pip install torch1.10.0+cu113 torchvision0.11.0+cu113 -f https://download.pytorch.org/whl/torch_stable.html -i https://pypi.tuna.tsinghua.edu.cn/simple)其中-i https://pypi.tuna.tsinghua.edu.cn/simple代表使用清华源,这行命令要求nvidia-smi显示的CUDA版本>=11.3,最后安装剩余依赖包使用:pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
在这里插入图片描述
在这里插入图片描述

(3)安装Pyside6库 pip install pyside6==6.3 -i https://pypi.tuna.tsinghua.edu.cn/simple
在这里插入图片描述

(4)对于windows系统下的pycocotools库的安装:pip install pycocotools-windows -i https://pypi.tuna.tsinghua.edu.cn/simple

界面及功能展示

下面给出本博文设计的软件界面,整体界面简洁大方,大体功能包括训练模型的导入、初始化;置信分与IOU阈值的调节、图像上传、检测、可视化结果展示、结果导出与结束检测;视频的上传、检测、可视化结果展示、结果导出与结束检测;已检测目标列表、位置信息;前向推理用时。希望大家可以喜欢,初始界面如下图:
在这里插入图片描述

模型选择与初始化

用户可以点击模型权重选择按钮上传训练好的模型权重,训练权重格式可为.pt、.onnx以及。engine等,之后再点击模型权重初始化按钮可实现已选择模型初始化信息的设置。

在这里插入图片描述
在这里插入图片描述

置信分与IOU的改变

在Confidence或IOU下方的输入框中改变值即可同步改变滑动条的进度,同时改变滑动条的进度值也可同步改变输入框的值;Confidence或IOU值的改变将同步到模型里的配置,将改变检测置信度阈值与IOU阈值。

图像选择、检测与导出

用户可以点击选择图像按钮上传单张图片进行检测与。
在这里插入图片描述

再点击图像检测按钮可完成输入图像的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

再点击检测结果展示按钮可在系统左下方显示输入图像检测的结果,系统将显示出图片中的目标的类别、位置和置信度信息。
在这里插入图片描述

点击图像检测结果导出按钮即可导出检测后的图像,在保存栏里输入保存的图片名称及后缀即可实现检测结果图像的保存。
在这里插入图片描述

点击结束图像检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频。

视频选择、检测与导出

用户可以点击选择视频按钮上传视频进行检测与,之后系统会将视频的第一帧输入到系统界面的左上方显示。
在这里插入图片描述

再点击视频检测按钮可完成输入视频的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

点击暂停视频检测按钮即可实现输入视频的暂停,此时按钮变为继续视频检测,输入视频帧与帧检测结果会保留在系统界面,可点击下拉目标框选择已检测目标的坐标位置信息,再点击继续视频检测按钮即可实现输入视频的检测。
点击视频检测结果导出按钮即可导出检测后的视频,在保存栏里输入保存的图片名称及后缀即可实现检测结果视频的保存。
在这里插入图片描述

点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频。

摄像头打开、检测与结束

用户可以点击打开摄像头按钮来打开摄像头设备进行检测与,之后系统会将摄像头图像输入到系统界面的左上方显示。
在这里插入图片描述

再点击摄像头检测按钮可完成输入摄像头的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频或打开摄像按钮来上传图像、视频或打开摄像头。

算法原理介绍

本系统采用了基于深度学习的单阶段目标检测算法YOLOv5,相比于YOLOv3和YOLOv4,YOLOv5在检测精度和速度上都有很大的提升。YOLOv5算法的核心思想是将目标检测问题转化为一个回归问题,通过直接预测物体中心点的坐标来代替Anchor框。此外,YOLOv5使用SPP(Spatial Pyramid Pooling)的特征提取方法,这种方法可以在不增加计算量的情况下,有效地提取多尺度特征,提高检测性能。YOLOv5s模型的整体结构如下图所示。
在这里插入图片描述

YOLOv5网络结构是由Input、Backbone、Neck、Prediction组成。YOLOv5的Input部分是网络的输入端,采用Mosaic数据增强方式,对输入数据随机裁剪,然后进行拼接。Backbone是YOLOv5提取特征的网络部分,特征提取能力直接影响整个网络性能。在特征提取阶段,YOLOv5使用CSPNet(Cross Stage Partial Network)结构,它将输入特征图分为两部分,一部分通过一系列卷积层进行处理,另一部分直接进行下采样,最后将这两部分特征图进行融合。这种设计使得网络具有更强的非线性表达能力,可以更好地处理目标检测任务中的复杂背景和多样化物体。在Neck阶段使用连续的卷积核C3结构块融合特征图。在Prediction阶段,模型使用结果特征图预测目标的中心坐标与尺寸信息。博主觉得YOLOv5不失为一种目标检测的高性能解决方案,能够以较高的准确率对目标进行分类与定位。当然现在YOLOv6、YOLOv7、YOLOv8等算法也在不断提出和改进,后续博主也会将这些算法融入到本系统中,敬请期待。

数据集介绍

本系统使用的道路瑕疵数据集手动标注了(裂纹(Crack)、检查井(Manhole)、网(Net)、裂纹块(Patch-Crack)、网块(Patch-Net)、坑洼块(Patch-Pothole)、坑洼(Pothole)和其他(other))这八个类别,数据集总计6000张图片。该数据集中类别都有大量的旋转和不同的光照条件,有助于训练出更加鲁棒的检测模型。本文实验的道路瑕疵检测数据集包含训练集4822张图片,验证集1178张图片,选取部分数据部分样本数据集如下图所示。由于YOLOv5算法对输入图片大小有限制,需要将所有图片调整为相同的大小。为了在不影响检测精度的情况下尽可能减小图片的失真,我们将所有图片调整为640x640的大小,并保持原有的宽高比例。此外,为了增强模型的泛化能力和鲁棒性,我们还使用了数据增强技术,包括随机旋转、缩放、裁剪和颜色变换等,以扩充数据集并减少过拟合风险。
在这里插入图片描述

关键代码解析

本系统的深度学习模型使用PyTorch实现,基于YOLOv5算法进行目标检测。在训练阶段,我们使用了预训练模型作为初始模型进行训练,然后通过多次迭代优化网络参数,以达到更好的检测性能。在训练过程中,我们采用了学习率衰减和数据增强等技术,以增强模型的泛化能力和鲁棒性。
在测试阶段,我们使用了训练好的模型来对新的图片和视频进行检测。通过设置阈值,将置信度低于阈值的检测框过滤掉,最终得到检测结果。同时,我们还可以将检测结果保存为图片或视频格式,以便进行后续分析和应用。本系统基于YOLOv5算法,使用PyTorch实现。代码中用到的主要库包括PyTorch、NumPy、OpenCV、PyQt等。
在这里插入图片描述
在这里插入图片描述

Pyside6界面设计

Pyside6是Python语言的GUI编程解决方案之一,可以快速地为Python程序创建GUI应用。在本博文中,我们使用Pyside6库创建一个图形化界面,为用户提供简单易用的交互界面,实现用户选择图片、视频进行目标检测。
我们使用Qt Designer设计图形界面,然后使用Pyside6将设计好的UI文件转换为Python代码。图形界面中包含多个UI控件,例如:标签、按钮、文本框、多选框等。通过Pyside6中的信号槽机制,可以使得UI控件与程序逻辑代码相互连接。

实验结果与分析

在实验结果与分析部分,我们使用精度和召回率等指标来评估模型的性能,还通过损失曲线和PR曲线来分析训练过程。在训练阶段,我们使用了前面介绍的道路瑕疵数据集进行训练,使用了YOLOv5算法对数据集训练,总计训练了300个epochs。在训练过程中,我们使用tensorboard记录了模型在训练集和验证集上的损失曲线。从下图可以看出,随着训练次数的增加,模型的训练损失和验证损失都逐渐降低,说明模型不断地学习到更加精准的特征。在训练结束后,我们使用模型在数据集的验证集上进行了评估,得到了以下结果。
下图展示了本博文在使用YOLOv5模型对道路瑕疵数据集进行训练时候的Mosaic数据增强图像。
在这里插入图片描述
在这里插入图片描述

综上,本博文训练得到的YOLOv5模型在数据集上表现良好,具有较高的检测精度和鲁棒性,可以在实际场景中应用。另外本博主对整个系统进行了详细测试,最终开发出一版流畅的高精度目标检测系统界面,就是本博文演示部分的展示,完整的UI界面、测试图片视频、代码文件等均已打包上传,感兴趣的朋友可以关注我私信获取。另外本博文的PDF与更多的目标检测系统请关注笔者的微信公众号 BestSongC (原Nuist计算机视觉与模式)来获取。

其他基于深度学习的目标检测系统如西红柿、猫狗、山羊、野生目标、烟头、二维码、头盔、交警、野生动物、野外烟雾、人体摔倒、红外行人、家禽猪、苹果、推土机、蜜蜂、打电话、鸽子、足球、奶牛、人脸口罩、安全背心、烟雾检测系统等有需要的朋友关注我,从博主其他中获取下载链接。

完整项目目录如下所示:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/39650.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

flutter开发实战-生日等日期选择器DatePicker

flutter开发实战-生日等日期选择器DatePicker 在开发遇到设置生日等信息需要选择日期,这里用到的是CupertinoDatePicker iOS效果的日期、时间选择器 一、效果图 运行后效果图如下 二、代码实现 我们需要调用底部弹窗显示 //显示底部弹窗static void bottomShe…

怎么学习Java I/O相关的知识和技术? - 易智编译EaseEditing

要学习Java I/O(输入输出)相关的知识和技术,可以按照以下步骤进行: 理解Java I/O基础知识: 首先,了解Java I/O的基本概念和术语,包括输入流和输出流、字节流和字符流、文件读写等。掌握Java中…

TCP/IP网络编程 第十六章:关于IO流分离的其他内容

分离I/O流 两次I/O流分离 我们之前通过2种方法分离过IO流,第一种是第十章的“TCPI/O过程(Routine)分离”。这种方法通过调用fork函数复制出1个文件描述符,以区分输入和输出中使用的文件描述符。虽然文件描述符本身不会根据输入和输…

[极客大挑战 2019]PHP(反序列化)

介绍说明&#xff0c;有备份的习惯&#xff0c;找常见的备份文件后缀名 使用dirsearch进行扫描 dirsearch -u http://f64378a5-a3e0-4dbb-83a3-990bb9e19901.node4.buuoj.cn:81/ -e php-e 指定网站语言 扫描出现&#xff0c;www.zip文件 查看index.php <?php include c…

CSS——基础知识及使用

CSS 是什么 CSS是层叠样式表 (Cascading Style Sheets)的简写.CSS 能够对网页中元素位置的排版进行像素级精确控制, 实现美化页面的效果. 能够做到页面的样式和结构分离。 基本语法规范 选择器 { 一条/N条声明 } 选择器决定针对谁修改 (找谁)声明决定修改啥. (干啥)声明的…

【复盘】记录一次类型不一致导致的Kafka消费异常问题

背景 业务主要是通过A系统向B系统写入Kafka&#xff0c;然后B系统消费Kafka 将结果写到Kafka中&#xff0c;A进行消费最终结果。 在整个流程中&#xff0c;A写入Kafka会写入一张 record1表记录&#xff0c;然后在A消费最终结果的时候也记录一张record2表。主要改动的话 只是B系…

Apache Doris (三十一):Doris 数据导入(九)Spark Load 4- 导入Hive数据及注意事项

目录 1. Spark Load导入Hive非分区表数据 2. Spark Load 导入Hive分区表数据 3. 注意事项 进入正文之前&#xff0c;欢迎订阅专题、对博文点赞、评论、收藏&#xff0c;关注IT贫道&#xff0c;获取高质量博客内容&#xff01; 宝子们订阅、点赞、收藏不迷路&#xff01;抓紧…

C#委托相关知识

最开始学习C#的时候&#xff0c;简单的看过委托&#xff0c;最近工作中经常需要使用到委托。这篇笔记是对之前看过的委托的一个补充&#xff0c;也是对最近工作中遇到的委托的一个总结吧。 这里使用的是窗体程序作为例子。实例在文末&#xff0c;可下载。 委托是一个类&#xf…

使用Canal同步mysql数据到es

一、简介 Canal主要用途是基于 MySQL 数据库增量日志解析&#xff0c;提供增量数据订阅和消费。 当前的 canal 支持源端 MySQL 版本包括 5.1.x , 5.5.x , 5.6.x , 5.7.x , 8.0.x 二、工作原理 MySQL主备复制原理 MySQL master 将数据变更写入二进制日志( binary log, 其中记…

文本挖掘 day4 基于PMC知识框架文本挖掘的新能源汽车政策动态评价

基于PMC知识框架文本挖掘的新能源汽车政策动态评价 2. 研究设计2.1 研究技术路线2.2 数据采集2.3 动态分相 3. 基于PMC知识框架的策略动态挖掘3.1 PMC知识框架的建立3.2 基于PMC知识框架的策略挖掘字典3.2.1 字典建立步骤3.2.2 建立经验证据的词典 3.3 策略动态挖掘分析3.3.1 发…

力扣 452. 用最少数量的箭引爆气球

题目来源&#xff1a;https://leetcode.cn/problems/minimum-number-of-arrows-to-burst-balloons/description/ C题解1&#xff1a; 根据x_end排序&#xff0c;x_start小的在前&#xff0c;这样可以保证如果第 i 个球的x_end大于等于第 j 个球的x_start时&#xff0c;第 j 个球…

JavaWeb——基于Spring Boot的图书数字化管理系统的设计与实现

课程设计总结 1 概述 1.1 项目开发背景 随着信息技术的快速发展&#xff0c;数字化管理已经成为各行各业提高效率和管理水平的重要手段。在图书管理领域&#xff0c;数字化管理系统可以有效地提高管理效率&#xff0c;提供更好的用户体验。本项目旨在开发一个基于Spring…

【Elasticsearch】DSL查询文档

目录 1.DSL查询文档 1.1.DSL查询分类 1.2.全文检索查询 1.2.1.使用场景 1.2.2.基本语法 1.2.3.示例 1.2.4.总结 1.3.精准查询 1.3.1.term查询 1.3.2.range查询 1.3.3.总结 1.4.地理坐标查询 1.4.1.矩形范围查询 1.4.2.附近查询 1.5.复合查询 1.5.1.相关性算分 …

LabVIEW开发惯性测量系统

LabVIEW开发惯性测量系统 惯性导航系统是通过将惯性传感器直接绑定在载体主体上来完成制导和导航任务的系统。所以惯性测量系统主要是动态静态地测试陀螺仪和加速度计的性能。测试点和计算点数众多&#xff0c;对测试速度和精度要求高。基于上述特点&#xff0c;基于虚拟仪器软…

Docker安装ElasticSearch/ES

目录 前言准备拉取ElasticSearch镜像安装ElasticSearch拉取elasticsearch-head镜像安装elasticsearch-head参考 前言 TencentOS Server 3.1Docker version 19.03.14, build 5eb3275d40 准备 docker 已安装。 安装 docker 参考&#xff1a;【Centos 8】【Centos 7】安装 docke…

gitbash2.41安装教程——2023.07

文章目录 1、下载安装包2、安装 1、下载安装包 进入官网下载&#xff0c;官网链接 上面有多种系统可以选择&#xff0c;我是windows&#xff0c;点击windows进行下载 这里可以直接下载最新版本的git 2.41.0 64位。 下载可能有点慢&#xff0c;耐心等待。 2、安装 下载完…

三种视频字幕提取工具让你更好地阅读和学习

视频字幕提取技术是指通过计算机算法自动从视频中提取出字幕文本的技术。这项技术能够大大提高视频的可用性&#xff0c;使得聋哑人士、语言学习者以及听力不佳的观众可以更好地理解视频内容。那么你知道视频字幕提取工具免费有哪些吗&#xff1f;接下来我将分享三款我亲测好用…

Oracle 的视图

Oracle 的视图 源数据&#xff1a; -- Create table create table STU_INFO (id NUMBER not null,name VARCHAR2(8),score NUMBER(4,1),class VARCHAR2(2) ) tablespace STUDENTpctfree 10initrans 1maxtrans 255storage(initial 64Knext 1Mminextents 1maxextents unlim…

单片机尽力少用位域操作

1、在51单片机中少用uint32_t类型&#xff0c;查看汇编真的好多条指令&#xff0c;尽力避免少用。 2、在32位单片机中&#xff0c;u8、u16、u32类型操作起来基本没有什么影响&#xff0c;下图是我做的测试&#xff0c;可能测试不全面&#xff0c;按照当前测试&#xff0c;在32…

使用Postman+JMeter进行简单的接口测试

以前每次学习接口测试都是百度&#xff0c;查看相关人员的实战经验&#xff0c;没有结合自己公司项目接口真正具体情况。 这里简单分享一下公司项目Web平台的一个查询接口&#xff0c;我会使用2种工具Postman和JMeter如何对同一个接口做调试。 准备工作 首先&#xff0c;登录公…