【Elasticsearch】DSL查询文档

目录

1.DSL查询文档

1.1.DSL查询分类

1.2.全文检索查询

1.2.1.使用场景

1.2.2.基本语法

1.2.3.示例

1.2.4.总结

1.3.精准查询

1.3.1.term查询

1.3.2.range查询

1.3.3.总结

1.4.地理坐标查询

1.4.1.矩形范围查询

1.4.2.附近查询

1.5.复合查询

1.5.1.相关性算分

1.5.2.算分函数查询

1)语法说明

2)示例

3)小结

1.5.3.布尔查询

1)语法示例:

2)示例

3)小结

1.DSL查询文档

elasticsearch的查询依然是基于JSON风格的DSL来实现的。

1.1.DSL查询分类

Elasticsearch提供了基于JSON的DSL(Domain Specific Language)来定义查询。常见的查询类型包括:

  • 查询所有:查询出所有数据,一般测试用。例如:match_all

  • 全文检索(full text)查询:利用分词器对用户输入内容分词,然后去倒排索引库中匹配。例如:

    • match_query

    • multi_match_query

  • 精确查询:根据精确词条值查找数据,一般是查找keyword、数值、日期、boolean等类型字段。例如:

    • ids

    • range

    • term

  • 地理(geo)查询:根据经纬度查询。例如:

    • geo_distance

    • geo_bounding_box

  • 复合(compound)查询:复合查询可以将上述各种查询条件组合起来,合并查询条件。例如:

    • bool

    • function_score

查询的语法基本一致:

GET /indexName/_search
{
  "query": {
    "查询类型": {
      "查询条件": "条件值"
    }
  }
}

我们以查询所有为例,其中:

  • 查询类型为match_all

  • 没有查询条件

// 查询所有
GET /indexName/_search
{
  "query": {
    "match_all": {
    }
  }
}

其它查询无非就是查询类型查询条件的变化。

1.2.全文检索查询

1.2.1.使用场景

全文检索查询的基本流程如下:

  • 对用户搜索的内容做分词,得到词条

  • 根据词条去倒排索引库中匹配,得到文档id

  • 根据文档id找到文档,返回给用户

比较常用的场景包括:

  • 商城的输入框搜索

  • 百度输入框搜索

例如京东:

因为是拿着词条去匹配,因此参与搜索的字段也必须是可分词的text类型的字段。

1.2.2.基本语法

常见的全文检索查询包括:

  • match查询:单字段查询

  • multi_match查询:多字段查询,任意一个字段符合条件就算符合查询条件

match查询语法如下:

GET /indexName/_search
{
  "query": {
    "match": {
      "FIELD": "TEXT"
    }
  }
}

mulit_match语法如下:

GET /indexName/_search
{
  "query": {
    "multi_match": {
      "query": "TEXT",
      "fields": ["FIELD1", " FIELD12"]
    }
  }
}

1.2.3.示例

match查询示例:

multi_match查询示例:

可以看到,两种查询结果是一样的,为什么?

因为我们将brand、name、business值都利用copy_to复制到了all字段中。因此你根据三个字段搜索,和根据all字段搜索效果当然一样了。

但是,搜索字段越多,对查询性能影响越大,因此建议采用copy_to,然后单字段查询的方式。

1.2.4.总结

match和multi_match的区别是什么?

  • match:根据一个字段查询

  • multi_match:根据多个字段查询,参与查询字段越多,查询性能越差

1.3.精准查询

精确查询一般是查找keyword、数值、日期、boolean等类型字段。所以不会对搜索条件分词。常见的有:

  • term:根据词条精确值查询

  • range:根据值的范围查询

1.3.1.term查询

因为精确查询的字段搜是不分词的字段,因此查询的条件也必须是不分词的词条。查询时,用户输入的内容跟自动值完全匹配时才认为符合条件。如果用户输入的内容过多,反而搜索不到数据。

语法说明:

// term查询
GET /indexName/_search
{
  "query": {
    "term": {
      "FIELD": {
        "value": "VALUE"
      }
    }
  }
}

示例:

当我搜索的是精确词条时,能正确查询出结果:

但是,当我搜索的内容不是词条,而是多个词语形成的短语时,反而搜索不到:

1.3.2.range查询

范围查询,一般应用在对数值类型做范围过滤的时候。比如做价格范围过滤。

基本语法:

// range查询
GET /indexName/_search
{
  "query": {
    "range": {
      "FIELD": {
        "gte": 10, // 这里的gte代表大于等于,gt则代表大于
        "lte": 20 // lte代表小于等于,lt则代表小于
      }
    }
  }
}

示例:

1.3.3.总结

精确查询常见的有哪些?

  • term查询:根据词条精确匹配,一般搜索keyword类型、数值类型、布尔类型、日期类型字段

  • range查询:根据数值范围查询,可以是数值、日期的范围

1.4.地理坐标查询

所谓的地理坐标查询,其实就是根据经纬度查询,官方文档:Geo queries | Elasticsearch Guide [8.8] | Elastic

常见的使用场景包括:

  • 携程:搜索我附近的酒店

  • 滴滴:搜索我附近的出租车

  • 微信:搜索我附近的人

附近的酒店:

附近的车:

1.4.1.矩形范围查询

矩形范围查询,也就是geo_bounding_box查询,查询坐标落在某个矩形范围的所有文档:

查询时,需要指定矩形的左上右下两个点的坐标,然后画出一个矩形,落在该矩形内的都是符合条件的点。

语法如下:

// geo_bounding_box查询
GET /indexName/_search
{
  "query": {
    "geo_bounding_box": {
      "FIELD": {
        "top_left": { // 左上点
          "lat": 31.1,
          "lon": 121.5
        },
        "bottom_right": { // 右下点
          "lat": 30.9,
          "lon": 121.7
        }
      }
    }
  }
}

这种并不符合“附近的人”这样的需求,所以我们就不做了。

1.4.2.附近查询

附近查询,也叫做距离查询(geo_distance):查询到指定中心点小于某个距离值的所有文档。

换句话来说,在地图上找一个点作为圆心,以指定距离为半径,画一个圆,落在圆内的坐标都算符合条件:

语法说明:

// geo_distance 查询
GET /indexName/_search
{
  "query": {
    "geo_distance": {
      "distance": "15km", // 半径
      "FIELD": "31.21,121.5" // 圆心
    }
  }
}

示例:

我们先搜索陆家嘴附近15km的酒店:

发现共有47家酒店。

然后把半径缩短到3公里:

可以发现,搜索到的酒店数量减少到了5家。

1.5.复合查询

复合(compound)查询:复合查询可以将其它简单查询组合起来,实现更复杂的搜索逻辑。常见的有两种:

  • fuction score:算分函数查询,可以控制文档相关性算分,控制文档排名

  • bool query:布尔查询,利用逻辑关系组合多个其它的查询,实现复杂搜索

1.5.1.相关性算分

当我们利用match查询时,文档结果会根据与搜索词条的关联度打分(_score),返回结果时按照分值降序排列。

例如,我们搜索 "虹桥如家",结果如下:

[
  {
    "_score" : 17.850193,
    "_source" : {
      "name" : "虹桥如家酒店真不错",
    }
  },
  {
    "_score" : 12.259849,
    "_source" : {
      "name" : "外滩如家酒店真不错",
    }
  },
  {
    "_score" : 11.91091,
    "_source" : {
      "name" : "迪士尼如家酒店真不错",
    }
  }
]

在elasticsearch中,早期使用的打分算法是TF-IDF算法,公式如下:

在后来的5.1版本升级中,elasticsearch将算法改进为BM25算法,公式如下:

TF-IDF算法有一各缺陷,就是词条频率越高,文档得分也会越高,单个词条对文档影响较大。而BM25则会让单个词条的算分有一个上限,曲线更加平滑:

小结:elasticsearch会根据词条和文档的相关度做打分,算法由两种:

  • TF-IDF算法

  • BM25算法,elasticsearch5.1版本后采用的算法

1.5.2.算分函数查询

根据相关度打分是比较合理的需求,但合理的不一定是产品经理需要的。

以百度为例,你搜索的结果中,并不是相关度越高排名越靠前,而是谁掏的钱多排名就越靠前。如图:

要想认为控制相关性算分,就需要利用elasticsearch中的function score 查询了。

1)语法说明

function score 查询中包含四部分内容:

  • 原始查询条件:query部分,基于这个条件搜索文档,并且基于BM25算法给文档打分,原始算分(query score)

  • 过滤条件:filter部分,符合该条件的文档才会重新算分

  • 算分函数:符合filter条件的文档要根据这个函数做运算,得到的函数算分(function score),有四种函数

    • weight:函数结果是常量

    • field_value_factor:以文档中的某个字段值作为函数结果

    • random_score:以随机数作为函数结果

    • script_score:自定义算分函数算法

  • 运算模式:算分函数的结果、原始查询的相关性算分,两者之间的运算方式,包括:

    • multiply:相乘

    • replace:用function score替换query score

    • 其它,例如:sum、avg、max、min

function score的运行流程如下:

  • 1)根据原始条件查询搜索文档,并且计算相关性算分,称为原始算分(query score)

  • 2)根据过滤条件,过滤文档

  • 3)符合过滤条件的文档,基于算分函数运算,得到函数算分(function score)

  • 4)将原始算分(query score)和函数算分(function score)基于运算模式做运算,得到最终结果,作为相关性算分。

因此,其中的关键点是:

  • 过滤条件:决定哪些文档的算分被修改

  • 算分函数:决定函数算分的算法

  • 运算模式:决定最终算分结果

2)示例

需求:给“如家”这个品牌的酒店排名靠前一些

翻译一下这个需求,转换为之前说的四个要点:

  • 原始条件:不确定,可以任意变化

  • 过滤条件:brand = "如家"

  • 算分函数:可以简单粗暴,直接给固定的算分结果,weight

  • 运算模式:比如求和

因此最终的DSL语句如下:

GET /hotel/_search
{
  "query": {
    "function_score": {
      "query": {  .... }, // 原始查询,可以是任意条件
      "functions": [ // 算分函数
        {
          "filter": { // 满足的条件,品牌必须是如家
            "term": {
              "brand": "如家"
            }
          },
          "weight": 2 // 算分权重为2
        }
      ],
      "boost_mode": "sum" // 加权模式,求和
    }
  }
}        

测试,在未添加算分函数时,如家得分如下:

添加了算分函数后,如家得分就提升了:

3)小结

function score query定义的三要素是什么?

  • 过滤条件:哪些文档要加分

  • 算分函数:如何计算function score

  • 加权方式:function score 与 query score如何运算

1.5.3.布尔查询

布尔查询是一个或多个查询子句的组合,每一个子句就是一个子查询。子查询的组合方式有:

  • must:必须匹配每个子查询,类似“与”

  • should:选择性匹配子查询,类似“或”

  • must_not:必须不匹配,不参与算分,类似“非”

  • filter:必须匹配,不参与算分

比如在搜索酒店时,除了关键字搜索外,我们还可能根据品牌、价格、城市等字段做过滤:

每一个不同的字段,其查询的条件、方式都不一样,必须是多个不同的查询,而要组合这些查询,就必须用bool查询了。

需要注意的是,搜索时,参与打分的字段越多,查询的性能也越差。因此这种多条件查询时,建议这样做:

  • 搜索框的关键字搜索,是全文检索查询,使用must查询,参与算分

  • 其它过滤条件,采用filter查询。不参与算分

1)语法示例:

GET /hotel/_search
{
  "query": {
    "bool": {
      "must": [
        {"term": {"city": "上海" }}
      ],
      "should": [
        {"term": {"brand": "皇冠假日" }},
        {"term": {"brand": "华美达" }}
      ],
      "must_not": [
        { "range": { "price": { "lte": 500 } }}
      ],
      "filter": [
        { "range": {"score": { "gte": 45 } }}
      ]
    }
  }
}

2)示例

需求:搜索名字包含“如家”,价格不高于400,在坐标31.21,121.5周围10km范围内的酒店。

分析:

  • 名称搜索,属于全文检索查询,应该参与算分。放到must中

  • 价格不高于400,用range查询,属于过滤条件,不参与算分。放到must_not中

  • 周围10km范围内,用geo_distance查询,属于过滤条件,不参与算分。放到filter中

3)小结

bool查询有几种逻辑关系?

  • must:必须匹配的条件,可以理解为“与”

  • should:选择性匹配的条件,可以理解为“或”

  • must_not:必须不匹配的条件,不参与打分

  • filter:必须匹配的条件,不参与打分

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/39630.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

LabVIEW开发惯性测量系统

LabVIEW开发惯性测量系统 惯性导航系统是通过将惯性传感器直接绑定在载体主体上来完成制导和导航任务的系统。所以惯性测量系统主要是动态静态地测试陀螺仪和加速度计的性能。测试点和计算点数众多,对测试速度和精度要求高。基于上述特点,基于虚拟仪器软…

Docker安装ElasticSearch/ES

目录 前言准备拉取ElasticSearch镜像安装ElasticSearch拉取elasticsearch-head镜像安装elasticsearch-head参考 前言 TencentOS Server 3.1Docker version 19.03.14, build 5eb3275d40 准备 docker 已安装。 安装 docker 参考:【Centos 8】【Centos 7】安装 docke…

gitbash2.41安装教程——2023.07

文章目录 1、下载安装包2、安装 1、下载安装包 进入官网下载,官网链接 上面有多种系统可以选择,我是windows,点击windows进行下载 这里可以直接下载最新版本的git 2.41.0 64位。 下载可能有点慢,耐心等待。 2、安装 下载完…

三种视频字幕提取工具让你更好地阅读和学习

视频字幕提取技术是指通过计算机算法自动从视频中提取出字幕文本的技术。这项技术能够大大提高视频的可用性,使得聋哑人士、语言学习者以及听力不佳的观众可以更好地理解视频内容。那么你知道视频字幕提取工具免费有哪些吗?接下来我将分享三款我亲测好用…

Oracle 的视图

Oracle 的视图 源数据: -- Create table create table STU_INFO (id NUMBER not null,name VARCHAR2(8),score NUMBER(4,1),class VARCHAR2(2) ) tablespace STUDENTpctfree 10initrans 1maxtrans 255storage(initial 64Knext 1Mminextents 1maxextents unlim…

单片机尽力少用位域操作

1、在51单片机中少用uint32_t类型,查看汇编真的好多条指令,尽力避免少用。 2、在32位单片机中,u8、u16、u32类型操作起来基本没有什么影响,下图是我做的测试,可能测试不全面,按照当前测试,在32…

使用Postman+JMeter进行简单的接口测试

以前每次学习接口测试都是百度,查看相关人员的实战经验,没有结合自己公司项目接口真正具体情况。 这里简单分享一下公司项目Web平台的一个查询接口,我会使用2种工具Postman和JMeter如何对同一个接口做调试。 准备工作 首先,登录公…

再开源一款轻量内存池

前两天已开源线程池,开源一款轻量线程池项目,本节继续开源另一个孪生兄弟:内存池。 本节的线程池与内存池代码解析会在我的星球详细讲解。 内存池:https://github.com/Light-City/light-memory-pool 线程池:https://gi…

【数据结构】图解八大排序(下)

文章目录 一、前言二、快速排序1. hoare 版2. 挖坑法3. 前后指针法4. 快排的非递归实现5. 时空复杂度分析 三、归并排序1. 递归实现2. 非递归实现 四、计数排序 一、前言 在上一篇文章中,我们已经学习了五种排序算法,还没看过的小伙伴可以去看一下&…

python将dataframe数据导入MongoDB非关系型数据库

文章目录 pymongo连接新建数据库和集合pandas导入数据插入数据数据查看 pymongo连接 import pymongo client pymongo.MongoClient("mongodb://localhost:27017/") dblist client.list_database_names() for db in dblist:print(db) #查看已有数据库admin bilibil…

接口测试 react+unittest+flask 接口自动化测试平台

目录 1 前言 2 框架 2-1 框架简介 2-2 框架介绍 2-3 框架结构 3 平台 3-1 平台组件图 1 新建用例 2 生成测试任务 3 执行并查看测试报告 3-2 用例管理 3-2-1 用例设计 3-3 任务管理 3-3-1 创建任务 3-3-2 执行任务 3-3-3 测试报告 3-3-4 邮件通知 1 前言 构建…

科技资讯|Apple Vision Pro新专利,关于相对惯性测量系统的校正

美国专利商标局正式授予苹果一项 Apple Vision Pro 相关专利,该专利涵盖了具有视觉校正功能的相对惯性测量系统。这样的系统用于弥补头显内的眼前庭不匹配,当 VR 头显中发生的事情与现实世界环境中发生的运动不匹配时,可能会导致恶心。 苹果…

怎么用Midjourney制作表情包

要使用Midjourney制作表情包,可以按照以下步骤进行操作: 1. 打开Midjourney的官方网站或下载Midjourney应用程序,并登录你的账户。 2. 在Midjourney中,选择创建新项目或表情包。 3. 在项目中,你可以选择使用预设的模…

笔记本电脑的电池健康:确保长时间使用和优异性能的关键

笔记本电脑已经成为我们日常生活中不可或缺的工具,无论是办公、学习还是娱乐,我们都依赖着它的便携性和高效性能。而在所有的硬件组件中,电池健康被认为是确保长时间使用和良好性能的关键因素之一。一块健康的电池不仅能提供持久的续航时间&a…

list模拟实现

一、结点的定义 有三个成员&#xff0c;2个指向前面和后面的指针&#xff0c;一个表示结点存储T类型的值。 对于_prev和_next&#xff0c;类型是 list_node<T>*&#xff0c;不是list_node*&#xff0c;加上类型参数T之后&#xff0c;才是模板类的类型。 构造函数中&am…

大模型时代,腾讯云“复制”腾讯|WAIC2023

点击关注 文&#xff5c;郝鑫 编&#xff5c;刘雨琦 刚过去的WAIC&#xff08;世界人工智能大会&#xff09;俨然成为了大模型厂商的成果汇报大会。 百度文心大模型升级到3.5版本&#xff0c;训练速度提升2倍&#xff0c;推理速度提升30倍&#xff1b;华为云发布盘古大模型3…

【数学建模】统计分析方法

文章目录 1.回归分析2. 逻辑回归3. 聚类分析4. 判别分析5. 主成分分析6. 因子分析7. 对应分析 1.回归分析 数据量要多&#xff0c;样本总量n越大越好——>保证拟合效果更好&#xff0c;预测效果越好 一般n>40/45较好 方法 建立回归模型 yiβ0β1i……βkxkiεi 所估计的…

❤️创意网页:HTML5,canvas创作科技感粒子特效(科技感粒子、js鼠标跟随、粒子连线)

✨博主&#xff1a;命运之光 &#x1f338;专栏&#xff1a;Python星辰秘典 &#x1f433;专栏&#xff1a;web开发&#xff08;简单好用又好看&#xff09; ❤️专栏&#xff1a;Java经典程序设计 ☀️博主的其他文章&#xff1a;点击进入博主的主页 前言&#xff1a;欢迎踏入…

Gateway网关组件(在Spring Cloud整合Gateway(idea19版本))

Spring Cloud Gateway官网:Spring Cloud Gateway 局域网中就有网关这个概念&#xff0c;局域网接收数据或发送数据都要通过网关&#xff0c;比如使用VMware虚拟机软件搭建虚拟机集群的时候&#xff0c;往往我们需要选择IP段中的⼀个IP作为网关地址,网关可以对请求进行控制,提升…

CSS科技感四角边框

实现效果:使用before和after就可以实现,代码量不多,长度颜色都可以自己调整 <!DOCTYPE html> <html lang="en"> <head><meta charset="UTF-8"><title>Title</title><style>*{margin:0;padding:0;}html,body{…