OpenCV中的RGB与YUV转换

1 基本概念

        YUV 颜色空间从模拟电视时代开始就被广泛应用于彩色图像的转换与处理。其基于一个 3x3 的矩阵,通过线性变换将 RGB 像素转换为一个亮度(Luma)分量 Y 以及两个色度(Chroma)分量 U 和 V。由于模拟电视存在着多种制式,如 NTSC 与 PAL 等等,考虑到具体硬件与技术上的差异,它们通常会采用不同的转换矩阵系数。即便到了如今的数字电视时代,业界依旧会保留这些差异以保证兼容性,但同时又会根据需求发展出更多新的转换系数。这就导致了 YUV 颜色空间其实是一个非常混乱的概念,甚至于 YUV 本身也只是一个约定俗成的统称,其实际可能为 YCbCr, Y’CbCr, Y’UV, YPbPr, YCC 等等标准叫法中的一种。因此,如果不清楚具体的转换系数,在 RGB 转 YUV 再转回 RGB 的过程中就可能存在转换矩阵不互逆而产生颜色偏差的问题。但是,要完整地阐明 YUV 的各种转换系数是比较困难的,具体可网上查阅 Wiki 等相关资料。本文主要从实用性出发,对 OpenCV 中的 YUV 颜色空间转换进行一些梳理,毕竟 OpenCV 在图像预处理中是非常常用的。

        首先要说明的是,尽管 RGB 与 YUV 的转换可通过一个 3x3 的矩阵变换来实现,但实际上这个 3x3 矩阵中的 9 个数字并不是完全独立选取的。YUV 另一个比较通用的叫法是 YCbCr,即 U 对应 Cb,V 对应 Cr。YCbCr 中的亮度 Y 由 R / G / B 加权求和所得,对应的是单通道的灰度图;而 Cb 反映了蓝色 B 分量与亮度 Y 的差异,Cr 反映了红色 R 分量与亮度 Y 的差异,Cb 与 Cr 统称为色差或色度。具体的转换公式如下:

Y  = R2Y * R + G2Y * G + B2Y * B
Cb = (B - Y) * YCB + delta
Cr = (R - Y) * YCR + delta

其中 [ R2Y, G2Y, B2Y, YCB, YCR ] 决定了不同的转换矩阵,它们都是非负的。由于 Cb 与 Cr 反映的是色差,所以它们的数值分布应该关于原点 0 对称,因此需要加上一个 delta 偏移使其尽量落在与 Y 一致的区间,常用的是 delta = 128。通常来说,RGB 与 YUV 的转换不是正交变换,因此对于 256 x 256 x 256 正立方体分布的 RGB 值,转换所得的 YUV 分布并不同样满足正立方体的分布,而通常是一个截断的锥体。如果在 YUV 转换回 RGB 时使用了锥体外的 YUV 值,所得 RGB 值在现实中则是不存在的,因而也无法显示。

        对于 RGB 转 YUV 或者 YUV 转 RGB,OpenCV 可通过调用 dst = cvtColor(src, code) 来实现,code 决定了所使用的转换系数以及 srcdst 的存储格式。注意,OpenCV 通常使用 BGR 而非 RGB 颜色顺序,但其依旧保留了对 RGB 顺序输入的支持,它们除了内存访问顺序不一样外并没有什么区别,因此在后续讨论 code 时,文章不会对 BGR 与 RGB 进行区分。通过查阅 OpenCV 源码中的 imgproc.hpp,可得 code 主要有:

// YCbCr 4:4:4  <-->  BGR
COLOR_BGR2YCrCb    = 36,
COLOR_YCrCb2BGR    = 38,
// YUV 4:4:4  <-->  BGR
COLOR_BGR2YUV      = 82, 
COLOR_YUV2BGR      = 84,
// YUV_FOCC 4:2:0  -->  BGR
COLOR_YUV2BGR_NV12  = 91,
COLOR_YUV2BGR_NV21  = 93,
COLOR_YUV420sp2BGR  = COLOR_YUV2BGR_NV21,
COLOR_YUV2BGR_YV12  = 99,
COLOR_YUV2BGR_IYUV  = 101,
COLOR_YUV2BGR_I420  = COLOR_YUV2BGR_IYUV,
COLOR_YUV420p2BGR   = COLOR_YUV2BGR_YV12,
// YUV_FOCC 4:2:2  -->  BGR
COLOR_YUV2BGR_UYVY = 108,
COLOR_YUV2BGR_Y422 = COLOR_YUV2BGR_UYVY,
COLOR_YUV2BGR_UYNV = COLOR_YUV2BGR_UYVY,
COLOR_YUV2BGR_YUY2 = 116,
COLOR_YUV2BGR_YVYU = 118,
COLOR_YUV2BGR_YUYV = COLOR_YUV2BGR_YUY2,
COLOR_YUV2BGR_YUNV = COLOR_YUV2BGR_YUY2,
// BGR  <-->  YUV_FOCC 4:2:0
COLOR_BGR2YUV_I420  = 128,
COLOR_BGR2YUV_IYUV  = COLOR_BGR2YUV_I420,
COLOR_BGR2YUV_YV12  = 132,

可以看到,关于 RGB 与 YUV 转换的命名非常繁杂混乱,但以上的 code 实际所涉及的转换系数可分为三类。其中,第一类为 COLOR_BGR2YUV 及其反变换 COLOR_YUV2BGR;第二类为 COLOR_BGR2YCrCb 及其反变换 COLOR_YCrCb2BGR;第三类为带有 FOCC (Four-Character Code) 后缀的 COLOR_BGR2YUV_FOCC 及其反变换 COLOR_YUV2BGR_FOCC。而通过进一步探究,可知前两类用于非下采样 YUV 的转换,而第三类则用于经过下采样的 YUV 的转换。在这里我们先简单地介绍一下 YUV 的下采样格式,这对于后续的理解十分有帮助。

        YUV 由一个亮度分量 Y 与两个色度分量 U 和 V 组成,而根据色彩科学的研究,人眼对亮度变化更加敏感,而对色度变化的感知则比较弱。因此,为了降低图像数据传输所需的带宽,通常会对色度分量 U 和 V 进行下采样,同时完整地保留 Y,这样可以尽可能地以较低成本维持相同的视觉主观体验。一般来说,U 和 V 的下采样位置是一样的。色度分量的下采样通常以每相邻的 4 个像素作为一个下采样单位,在其中保留 1 或 2 或 4 个像素,然而这相邻 4 个像素以及保留像素的选取方式是多样的,这就产生了非常繁杂的下采样格式,它们通常用 YUV 4 : m : n 来表示。下图是三种比较常用的下采样格式。

YUV 4 : m : n 通常是一种约定俗成的概念,m 与 n 并不一定具有实际意义。YUV 4:4:4 等同于保留所有的色度像素,这种格式通常只在 YUV 与 RGB 转换时使用。YUV 4:2:2 表示色度分量在水平方向上进行 1/2 的下采样,而垂直方向则不进行下采样,即 4 个像素中只保留 2 个,其中水平方向 1/2 下采样通常保留左侧像素而丢弃右侧像素,但这并不是强制的,在具体硬件实现中通常有多种模式选择,包括只保留右侧像素,或者两个像素求平均等等。YUV 4:2:2 通常只用在比较高端的摄像机图像处理芯片中。YUV 4:2:0 表示水平与垂直方向都进行 1/2 的下采样,即 4 个像素只保留 1 个,通常为左上角像素,但正如 YUV 4:2:2,其具体的实现也是可选的。YUV 4:2:0 是绝大多数图像处理芯片所使用的格式。YUV 4:1:1 类似于 YUV 4:2:0 只保留 4 个像素中的 1 个,但其只在水平方向上进行 1/4 的下采样,而垂直方向则完整保留,这种格式的应用相对较少。除了以上的格式以外,我们通常用 YUV 4:0:0 来表示灰度图,即只保留亮度 Y 而完全丢弃色度 U 和 V。当需要从下采样格式恢复到完整的 4:4:4 格式时,通常只需要把下采样时所保留的像素复制到所丢弃的像素位置即可,当然这不可避免会导致失真,但由于人眼对色度变化不敏感,这种失真是可接受的。

2 YUV 4:4:4 转换

        对于非下采样 YUV,或者称为 YUV 4:4:4 格式,OpenCV 提供了两类转换系数。

        对于第一类 COLOR_BGR2YUV 及其反变换 COLOR_YUV2BGR,虽然它的名字非常符合我们的认知直觉,但根据 Wikipedia 其应该属于比较久远的 BT.470 标准,目前已不多用。在 OpenCV 源码的 color_yuv.simd.hpp 中,可以看到

//to YUV
static const float B2YF = 0.114f;
static const float G2YF = 0.587f;
static const float R2YF = 0.299f;
static const float B2UF = 0.492f;
static const float R2VF = 0.877f;

代入前面的转换公式,可得具体的转换系数与公式如下:

[ Y U V ] = [ 0.299 0.587 0.114 − 0.147 − 0.289 0.436 0.615 − 0.515 − 0.100 ] [ R G B ] + [ 0 128 128 ] \left[ {\begin{array}{c} Y \\ U \\ V \end{array}} \right] = \left[ {\begin{array}{c} {0.299}&{0.587}&{0.114} \\ { - 0.147}&{ - 0.289}&{0.436} \\ {0.615}&{ - 0.515}&{ - 0.100} \end{array}} \right]\left[ {\begin{array}{c} R \\ G \\ B \end{array}} \right] + \left[ {\begin{array}{c} 0 \\ {128} \\ {128} \end{array}} \right] YUV = 0.2990.1470.6150.5870.2890.5150.1140.4360.100 RGB + 0128128

[ R G B ] = [ 1 0 1.140 1 − 0.395 − 0.581 1 2.032 0 ] [ Y U − 128 V − 128 ] \left[ {\begin{array}{c} R \\ G \\ B \end{array}} \right] = \left[ {\begin{array}{c} 1&0&{1.140} \\ 1&{ - 0.395}&{ - 0.581} \\ 1&{2.032}&0 \end{array}} \right]\left[ {\begin{array}{c} Y \\ {U - 128} \\ {V - 128} \end{array}} \right] RGB = 11100.3952.0321.1400.5810 YU128V128

要注意到,当 R = G = 0 , B = 255 R=G=0, B=255 R=G=0,B=255 时, U U U 取得最大值 U m a x = 239 U_{max}=239 Umax=239。依此计算,可得 Y ∈ [ 0 , 255 ] Y \in [0, 255] Y[0,255] U ∈ [ 17 , 239 ] U \in [17, 239] U[17,239] V ∈ [ − 29 , 285 ] V \in [-29, 285] V[29,285]。因此,Y / U / V 三者的量程在 BT.470 标准下并不一样,这大概是为了弥补模拟电视对于不同分量的响应差异。在数字信号处理中,因为图像通常使用 uint8 来表示像素值,所以 V 在存储前需要截断,从而丢失部分色彩信息。

        对于第二类 COLOR_BGR2YCrCb 及其反变换 COLOR_YCrCb2BGR,要注意的是 OpenCV 使用的是 YCrCb 而非 YUV 所对应的 YCbCr 顺序,在使用时应该小心,但具体这么做的原因未知。实际上 COLOR_BGR2YCrCb 所使用的转换系数才是我们比较熟知且常用的 BT.601 标准。在 OpenCV 源码的 color_yuv.simd.hpp 中,可以看到

//to YCbCr
static const float B2YF = 0.114f;
static const float G2YF = 0.587f;
static const float R2YF = 0.299f;
static const float YCBF = 0.564f; // == 1/2/(1-B2YF)
static const float YCRF = 0.713f; // == 1/2/(1-R2YF)

代入转换公式,可得具体的转换系数与公式如下:

[ Y C b C r ] = [ 0.299 0.587 0.114 − 0.169 − 0.331 0.500 0.500 − 0.419 − 0.081 ] [ R G B ] + [ 0 128 128 ] \left[ {\begin{array}{c} Y \\ {Cb} \\ {Cr} \end{array}} \right] = \left[ {\begin{array}{c} {0.299}&{0.587}&{0.114} \\ { - 0.169}&{ - 0.331}&{0.500} \\ {0.500}&{ - 0.419}&{ - 0.081} \end{array}} \right]\left[ {\begin{array}{c} R \\ G \\ B \end{array}} \right] + \left[ {\begin{array}{c} 0 \\ {128} \\ {128} \end{array}} \right] YCbCr = 0.2990.1690.5000.5870.3310.4190.1140.5000.081 RGB + 0128128

[ R G B ] = [ 1 0 1.402 1 − 0.344 − 0.714 1 1.772 0 ] [ Y C b − 128 C r − 128 ] \left[ {\begin{array}{c} R \\ G \\ B \end{array}} \right] = \left[ {\begin{array}{c} 1&0&{1.402} \\ 1&{ - 0.344}&{ - 0.714} \\ 1&{1.772}&0 \end{array}} \right]\left[ {\begin{array}{c} Y \\ {Cb - 128} \\ {Cr - 128} \end{array}} \right] RGB = 11100.3441.7721.4020.7140 YCb128Cr128

通过对比 COLOR_BGR2YUV 的转换公式,可知它们的亮度分量是相等的,但不同的地方在于 YCbCr 各个分量的量程都为 [ 0 , 255 ] [0, 255] [0,255],从而无需截断即可存储在 uint8 类型内,而这正是为了适应数字信号处理而对色度分量范围的调整。不考虑存储精度的损失,使用 COLOR_BGR2YCrCb 及其反变换 COLOR_YCrCb2BGR 进行颜色空间转换不会造成颜色失真。注意,在旧版本的 OpenCV 中,可能还存在 COLOR_BGR2YCR_CB,它和 COLOR_BGR2YCrCb 其实是一个东西,一般不使用。

3 YUV 下采样格式转换

        除了支持 YUV 4:4:4 格式的颜色空间转换以外,OpenCV 还支持 RGB 直接转换为 YUV 下采样格式,或者 YUV 下采样格式直接转换为 RGB,也就是前面所说的第三类 code。第三类 code 可表示为带有某个 FOCC 后缀的 COLOR_BGR2YUV_FOCC 以及反变换的 COLOR_YUV2BGR_FOCC,其中 FOCC 指由 4 个 ASCII 字符所组成的代码,即 Four-Character Code,有点类似于 C/C++ 中的 enumFOCC 在个人程序中通常可以任意定义,但是也存在一些约定俗成或者标准化的命名,例如编解码标准中的 JPEG, MPG4, H264 等等。在第一节中,我们提到过 YUV 中的色度分量通常要进行下采样以节省系统带宽。进一步地,经过下采样后的 YUV 数据中亮度和色度的像素个数是不一样的,我们不能像 RGB 那样将其表示为一个 [H, W, 3] 的矩阵,所以下采样的 YUV 数据存在多种不同的存储方式,这些就构成了各种繁乱的关于 YUV 格式的 FOCC

        为了正确使用 OpenCV 进行下采样格式的 YUV 数据颜色空间转换,这里简单地对 YUV 的存储方式进行介绍。常用的存储方式分为三种,即 Planar, Semi-Planar 以及 Interleave

  • Planar 即平面式存储。其在内存空间中先完整地顺序存储所有 Y 像素,然后再完整地顺序存储所有经过下采样的 U 数据,最后完整地顺序存储所有经过下采样的 V 数据,例如 Y1 Y2 Y3 … Yend U1 U2 U3 … Uend V1 V2 V3 … Vend。它的优点是可以适应任意的下采样格式,并且在只对单个分量如 Y 分量进行操作时无需对其他分量进行存取,缺点是在内存中 Y / U / V 数据间的跨度太大,当需要同时处理 Y / U / V 数据时不利于数据的连续突发传输,或者需要多个数据并行存取分支。注意,有时候也会先存储 V 再存储 U,这时要通过具体的 FOCC 进行区分。

  • Semi-Planar 即半平面式存储。其在内存空间中也是先完整地顺序存储所有 Y 像素,但由于 U 和 V 的数据量是相等的,且绝大多数算法都需要同时用到 U 和 V,所以 U 和 V 之间并不需要分开存储,而是可以进行交叉,例如 Y1 Y2 Y3 … Yend U1 V1 U2 V2 U3 V3 … Uend Vend。它也具有 Planar 格式的适应性以及亮度与色度分量独立存储的优点,但是能够将 U 和 V 的数据访问操作进行合并,改善了内存突发传输性能,所以 Semi-Planar 格式在硬件中反而是更加常用的。和 Planar 同理,有时候也会先存储 V 再存储 U,这时要通过具体的 FOCC 进行区分。

  • Interleave 即交叉式存储。不同于 Semi-Planar 只将 U 和 V 进行交叉,Interleave 将 Y / U / V 数据都交织在一起,可以最大化 YUV 数据的突发传输性能,缺点是在只需要亮度分量时必须把色度分量也进行传输。它通常用于亮度与色度数据量相等的情况,如 YUV 4:2:2 格式,这时两个 Y 对应着一个 U 和一个 V,根据四者的顺序的不同存在着多种 Interleave 格式,并对应着不同的 FOCC。YUV 4:2:2 常用的交叉式存储顺序有 YUYV, YVYU, UYVY, VYUY 等等,其中的两个 Y 需按像素顺序排列。例如对于 YUYV,在内存中有 Y1 U1 Y2 V1 Y3 U2 Y4 V2 …。实际上,大多数硬件都支持内存隔点并行存取的操作,因此对于 YUV 4:2:2 而言,将亮度与色度分量进行交叉存储并不会造成太大的数据传输负担,所以 YUV 4:2:2 数据的处理通常采用此存储格式。

        在第一节中我们已经列出了 OpenCV 所支持的 FOCC,但要注意 COLOR_BGR2YUV_FOCCCOLOR_YUV2BGR_FOCC 所支持的 FOCC 并不是对称的,例如 COLOR_BGR2YUV_FOCC 并不支持 RGB 到 YUV 4:2:2 的转换,如果有这方面的需求则需要利用第二节的 COLOR_BGR2YCrCb 将 RGB 转换到 YUV 4:4:4 并手动进行下采样。不过要注意的是,COLOR_BGR2YCrCbCOLOR_BGR2YUV_FOCC 的转换系数是有差异的,这个留到后面讨论。另外有些 FOCC 的意义是重复的。这里先对各个 FOCC 所对应的下采样及存储格式进行明确:

  • NV12 :YUV 4:2:0 Semi-Planar格式,其中色度分量先存 U 再存 V。
  • NV21 / 420S :YUV 4:2:0 Semi-Planar格式,其中色度分量先存 V 再存 U。
  • IYUV / I420 :YUV 4:2:0 Planar 格式,其中色度分量先存 U 再存 V。
  • YV12 / 420P :YUV 4:2:0 Planar 格式,其中色度分量先存 V 再存 U。
  • UYVY / Y222 / UYNV :YUV 4:2:2 Interleave 格式,存储顺序为 UYVY。
  • YUY2 / YUYV / YUNV :YUV 4:2:2 Interleave 格式,存储顺序为 YUYV。
  • YVYU :YUV 4:2:2 Interleave 格式,存储顺序为 YVYU。

        在 OpenCV 中,虽然 YUV 经过了下采样,但还是会把 YUV 数据打包为一个矩阵方便处理。对于 YUV 4:2:0,色度分量 U 和 V 的尺寸分别为亮度 Y 的 1/4,为了将它们打包在一起,OpenCV 使用一个 [H*3/2, W] 的二维矩阵进行存储,其中 [:H, :W] 存储的是 Y 数据,而 [H : H+H/2, :W] 则根据 Planar 或 Semi-Planar 格式顺序对 U 和 V 数据进行存储。根据以上的 FOCC 对应的格式,它们在二维矩阵中的分布如下图所示:

而对于 YUV 4:2:2,色度分量 U 和 V 的尺寸分别为亮度 Y 的 1/2,即色度分量的数据量和亮度分量是一样的,所以 OpenCV 使用一个 [H, W, 2] 的三维矩阵进行存储。因为矩阵在内存中的索引顺序通常从最后的维度开始,所以根据 FOCC 顺序对 YUV 4:2:2 数据进行存储时,应该在两个 [H, W] 平面上交替写入。以 UYVY 为例,它们在三维矩阵中的分布如下图所示,其他 FOCC 可自行推理,这里不赘述:

        在了解了 YUV 下采样格式的存储方式及对应的 FOCC 以后,我们就能基于 OpenCV 中的 COLOR_BGR2YUV_FOCCCOLOR_YUV2BGR_FOCC 直接将下采样后的 YUV 数据转换为 RGB,或者直接将 RGB 转换为特定下采样及存储方式的 YUV 数据了。实际上,第三类 COLOR_BGR2YUV_FOCC 可看作是第二类 COLOR_BGR2YCrCb 即 BT.601 的继承,但是又有些不同。在信号处理中,一个很重要的概念是系统响应,频域的滤波等操作通常会在时域或空域中引入震荡或过冲,最常见的就是理想低通滤波器中的 Gibbs 现象。数字 YUV 信号最终需要转换为模拟电平信号才能驱动显示器工作,例如通过电压控制液晶的偏转角度等等,而离散时间信号在还原为模拟连续时间信号时需连接一个低通滤波器,以此过滤掉由采样定理所引入的高频延拓分量,因此这时就有可能出现信号过冲的问题。因为 COLOR_BGR2YCrCb 所得 YUV 数据的取值范围都为 [0, 255],如果数模转换的过程中把 0 映射为 0 电平,而 255 映射为最高电平,经过系统滤波响应以后,信号实际的电平就有可能超出系统所能处理的范围。为了解决这个问题,ITU-R 组织在 BT.601 转换系数的基础上,对 COLOR_BGR2YCrCb 所得结果进行缩放与偏移,保留大约 10% 的过冲余量,从而得到了 OpenCV 第三类 code 所对应的转换系数,其通常配合特定的 YUV 下采样及存储格式使用。通过查阅 OpenCV 源码的 color_yuv.simd.hpp,可以看到

// Coefficients for RGB to YUV420p conversion
static const int ITUR_BT_601_SHIFT = 20;
static const int ITUR_BT_601_CRY =  269484;
static const int ITUR_BT_601_CGY =  528482;
static const int ITUR_BT_601_CBY =  102760;
static const int ITUR_BT_601_CRU = -155188;
static const int ITUR_BT_601_CGU = -305135;
static const int ITUR_BT_601_CBU =  460324;
static const int ITUR_BT_601_CGV = -385875;
static const int ITUR_BT_601_CBV = -74448;
//R = 1.164(Y - 16) + 1.596(V - 128)
//G = 1.164(Y - 16) - 0.813(V - 128) - 0.391(U - 128)
//B = 1.164(Y - 16)                  + 2.018(U - 128)

其中未标明的 ITUR_BT_601_CRV 和 ITUR_BT_601_CBU 是一样的。转换为浮点后,可得带有 FOCC 后缀的 RGB 与 YUV 转换系数与如下

[ Y ′ U ′ V ′ ] = [ 0.257 0.504 0.098 − 0.148 − 0.291 0.439 0.439 − 0.368 − 0.071 ] [ R G B ] + [ 16 128 128 ] \left[ {\begin{array}{c} {Y'} \\ {U'} \\ {V'} \end{array}} \right] = \left[ {\begin{array}{c} {0.257}&{0.504}&{0.098} \\ { - 0.148}&{ - 0.291}&{0.439} \\ {0.439}&{ - 0.368}&{ - 0.071} \end{array}} \right]\left[ {\begin{array}{c} R \\ G \\ B \end{array}} \right] + \left[ {\begin{array}{c} {16} \\ {128} \\ {128} \end{array}} \right] YUV = 0.2570.1480.4390.5040.2910.3680.0980.4390.071 RGB + 16128128

[ R G B ] = [ 1.164 0 1.596 1.164 − 0.391 − 0.813 1.164 2.018 0 ] [ Y ′ − 16 U ′ − 128 V ′ − 128 ] \left[ {\begin{array}{c} R \\ G \\ B \end{array}} \right] = \left[ {\begin{array}{c} {1.164}&0&{1.596} \\ {1.164}&{ - 0.391}&{ - 0.813} \\ {1.164}&{2.018}&0 \end{array}} \right]\left[ {\begin{array}{c} {Y' - 16} \\ {U' - 128} \\ {V' - 128} \end{array}} \right] RGB = 1.1641.1641.16400.3912.0181.5960.8130 Y16U128V128

容易算得,此时 Y ∈ [ 16 , 235 ] Y \in [16, 235] Y[16,235],而 U , V ∈ [ 16 , 240 ] U,V \in [16, 240] U,V[16,240]。即 YUV 数据的左右两侧都预留了一定的空间,使得一般的操作都不会导致数据的溢出,从而可以在硬件中减少一些截断操作。当然,其代价是数据的表示范围有所缩减,不能最大化 uint8 类型所能表示的精度,但总体上还是利大于弊的,所以这种非满量程的 YUV 也被 ITU-R 组织作为一种标准进行推广。前面我们提到,COLOR_BGR2YUV_FOCC 是对 COLOR_BGR2YCrCb 进行缩放与偏移得到的结果,事实也是如此,只需对比两者的转换矩阵即可,如下:

[ 0.257 0.504 0.098 − 0.148 − 0.291 0.439 0.439 − 0.368 − 0.071 ] ≈ 1 255 [ 219 224 224 ] [ 0.299 0.587 0.114 − 0.169 − 0.331 0.500 0.500 − 0.419 − 0.081 ] \left[ {\begin{array}{c} {0.257}&{0.504}&{0.098} \\ { - 0.148}&{ - 0.291}&{0.439} \\ {0.439}&{ - 0.368}&{ - 0.071} \end{array}} \right] \approx \frac{1}{{255}}\left[ {\begin{array}{c} {219}&{}&{} \\ {}&{224}&{} \\ {}&{}&{224} \end{array}} \right]\left[ {\begin{array}{c} {0.299}&{0.587}&{0.114} \\ { - 0.169}&{ - 0.331}&{0.500} \\ {0.500}&{ - 0.419}&{ - 0.081} \end{array}} \right] 0.2570.1480.4390.5040.2910.3680.0980.4390.071 2551 219224224 0.2990.1690.5000.5870.3310.4190.1140.5000.081

4 验证

为了验证以上的分析是否正确,这里提供了一个测试脚本,有兴趣的可以自行复制运行。

# -*- coding: utf-8 -*-
import numpy as np
import cv2

rgb2yuv_470_full = np.array([
    [ 0.299,  0.587,  0.114],
    [-0.147, -0.289,  0.436],
    [ 0.615, -0.515, -0.100]
])

rgb2yuv_601_full = np.array([
    [ 0.299,  0.587,  0.114],
    [-0.169, -0.331,  0.500],
    [ 0.500, -0.419, -0.081]
])

rgb2yuv_709_full = np.array([
    [ 0.2126,  0.7152,  0.0722],
    [-0.1146, -0.3854,  0.5000],
    [ 0.5000, -0.4542, -0.0458]
])

yuv2rgb_470_full = np.linalg.inv(rgb2yuv_470_full)
yuv2rgb_601_full = np.linalg.inv(rgb2yuv_601_full)
yuv2rgb_709_full = np.linalg.inv(rgb2yuv_709_full)

'''
print('rgb2yuv_470_full')
print(rgb2yuv_601_full)
print('yuv2rgb_470_full')
print(yuv2rgb_601_full)
print('rgb2yuv_601_full')
print(rgb2yuv_601_full)
print('yuv2rgb_601_full')
print(yuv2rgb_601_full)
print('rgb2yuv_709_full')
print(rgb2yuv_709_full)
print('yuv2rgb_709_full')
print(yuv2rgb_709_full)
'''

rgb2yuv_601_comp = 1./255 * np.diag([219, 224, 224]).dot(rgb2yuv_601_full)
rgb2yuv_709_comp = 1./255 * np.diag([219, 224, 224]).dot(rgb2yuv_709_full)

yuv2rgb_601_comp = np.linalg.inv(rgb2yuv_601_comp)
yuv2rgb_709_comp = np.linalg.inv(rgb2yuv_709_comp)

'''
print('rgb2yuv_601_comp')
print(rgb2yuv_601_comp)
print('yuv2rgb_601_comp')
print(yuv2rgb_601_comp)
print('rgb2yuv_709_comp')
print(rgb2yuv_709_comp)
print('yuv2rgb_709_comp')
print(yuv2rgb_709_comp)
'''

def convert_bgr_to_yuv(bgr):
    h, w = bgr.shape[:2]
    assert h % 4 == 0 and w % 4 == 0
    b, g, r = bgr.transpose(2, 0, 1)
    y =  0.299 * r + 0.587 * g + 0.114 * b
    # COLOR_BGR2YUV
    u = -0.147 * r - 0.289 * g + 0.436 * b + 128
    v =  0.615 * r - 0.515 * g - 0.100 * b + 128
    yuv_470 = np.clip(np.array([y, u, v]).transpose(1, 2, 0), 0, 255).astype('uint8')
    # COLOR_BGR2YCrCb
    u = -0.169 * r - 0.331 * g + 0.500 * b + 128
    v =  0.500 * r - 0.419 * g - 0.081 * b + 128
    yvu_601 = np.clip(np.array([y, v, u]).transpose(1, 2, 0), 0, 255).astype('uint8')
    # COLOR_BGR2YUV_FOCC
    y = y * 219. / 255 + 16
    u = u * 224. / 255 + 16
    v = v * 224. / 255 + 16
    yuv_fcc = np.clip(np.array([y, u, v]).transpose(1, 2, 0), 0, 255).astype('uint8')
    return yuv_470, yvu_601, yuv_fcc

def convert_yuv_to_fcc(yuv, fcc):
    fcc_list_420 = ['NV12', 'NV21', '420S', 'YV12', 'IYUV', 'I420', '420P']
    fcc_list_422 = ['UYVY', 'Y422', 'UYNV', 'YUY2', 'YVYU', 'YUYV', 'YUNV']
    assert fcc in fcc_list_420 + fcc_list_422
    h, w = yuv.shape[:2]
    assert h % 4 == 0 and w % 4 == 0
    y, u, v = yuv.transpose(2, 0, 1)
    if fcc in fcc_list_420:
        yuv420 = np.zeros([3*h//2, w], dtype='uint8')
        yuv420[:h] = y
        if fcc == 'NV12':
            yuv420[h:, 0::2] = u[::2, ::2]
            yuv420[h:, 1::2] = v[::2, ::2]
        elif fcc == 'NV21' or fcc == '420S':
            yuv420[h:, 0::2] = v[::2, ::2]
            yuv420[h:, 1::2] = u[::2, ::2]
        elif fcc == 'YV12' or fcc == '420P':
            yuv420[h: h+h//4] = v[::2, ::2].reshape([-1, w])
            yuv420[-h//4:   ] = u[::2, ::2].reshape([-1, w])
        elif fcc == 'IYUV' or fcc == 'I420':
            yuv420[h: h+h//4] = u[::2, ::2].reshape([-1, w])
            yuv420[-h//4:   ] = v[::2, ::2].reshape([-1, w])
        return yuv420
    elif fcc in fcc_list_422:
        yuv422 = np.zeros([h, w, 2], dtype='uint8')
        if fcc == 'UYVY' or fcc == 'Y422' or fcc == 'UYNV':
            yuv422[:, 0::2, 0] = u[:, ::2]
            yuv422[:, 1::2, 0] = v[:, ::2]
            yuv422[:,    :, 1] = y
        elif fcc == 'YUY2' or fcc == 'YUYV' or fcc == 'YUNV':
            yuv422[:,    :, 0] = y
            yuv422[:, 0::2, 1] = u[:, ::2]
            yuv422[:, 1::2, 1] = v[:, ::2]
        elif fcc == 'YVYU':
            yuv422[:,    :, 0] = y
            yuv422[:, 0::2, 1] = v[:, ::2]
            yuv422[:, 1::2, 1] = u[:, ::2]
        return yuv422
    else:
        return yuv

def convert_yuv470_to_bgr(yuv470):
    rgb = (yuv470 - np.array([0, 128, 128])).dot(yuv2rgb_470_full.T)
    bgr = np.clip(rgb[..., ::-1], 0, 255).astype('uint8')
    return bgr

def convert_yvu601_to_bgr(yvu601):
    rgb = (yvu601[..., [0, 2, 1]] - np.array([0, 128, 128])).dot(yuv2rgb_601_full.T)
    bgr = np.clip(rgb[..., ::-1], 0, 255).astype('uint8')
    return bgr

def test_yuv2bgr_fcc(yuv):
    fcc_dict_420 = {
        'NV12': cv2.COLOR_YUV2BGR_NV12,
        'NV21': cv2.COLOR_YUV2BGR_NV21, '420S': cv2.COLOR_YUV420sp2BGR,
        'YV12': cv2.COLOR_YUV2BGR_YV12, '420P': cv2.COLOR_YUV420p2BGR,
        'IYUV': cv2.COLOR_YUV2BGR_IYUV, 'I420': cv2.COLOR_YUV2BGR_I420
        }
    fcc_dict_422 = {
        'UYVY': cv2.COLOR_YUV2BGR_UYVY, 'Y422': cv2.COLOR_YUV2BGR_Y422, 'UYNV': cv2.COLOR_YUV2BGR_UYNV,
        'YUY2': cv2.COLOR_YUV2BGR_YUY2, 'YUYV': cv2.COLOR_YUV2BGR_YUYV, 'YUNV': cv2.COLOR_YUV2BGR_YUNV,
        'YVYU': cv2.COLOR_YUV2BGR_YVYU
        }
    yuv420up = yuv.copy()
    yuv420up[::2, 1::2, 1:] = yuv420up[::2, ::2, 1:]
    yuv420up[1::2, :, 1:] = yuv420up[::2, :, 1:]
    rgb = (yuv420up - np.array([16, 128, 128])).dot(yuv2rgb_601_comp.T)
    bgr420 = np.clip(rgb[..., ::-1], 0, 255).astype('int')
    yuv422up = yuv.copy()
    yuv422up[:, 1::2, 1:] = yuv422up[:, ::2, 1:]
    rgb = (yuv422up - np.array([16, 128, 128])).dot(yuv2rgb_601_comp.T)
    bgr422 = np.clip(rgb[..., ::-1], 0, 255).astype('int')
    for fcc, code in fcc_dict_420.items():
        yuv_fcc = convert_yuv_to_fcc(yuv, fcc)
        bgr_cv = cv2.cvtColor(yuv_fcc, code)
        print('{} bgr max diff: {}'.format(fcc, np.max(np.abs(bgr420 - bgr_cv))))
    for fcc, code in fcc_dict_422.items():
        yuv_fcc = convert_yuv_to_fcc(yuv, fcc)
        bgr_cv = cv2.cvtColor(yuv_fcc, code)
        print('{} bgr max diff: {}'.format(fcc, np.max(np.abs(bgr422 - bgr_cv))))

if __name__ == '__main__':
    w, h = 128, 128
    bgr = np.random.randint(0, 256, [h, w, 3], dtype='uint8')
    yuv470, yvu601, yuv_fcc = convert_bgr_to_yuv(bgr)

    # test COLOR_BGR2YUV
    y0 = cv2.cvtColor(bgr, cv2.COLOR_BGR2YUV)
    x0 = cv2.cvtColor(y0, cv2.COLOR_YUV2BGR)
    x1 = convert_yuv470_to_bgr(yuv470)
    d0 = np.max(yuv470.astype('int') - y0)
    d1 = np.max(x1.astype('int') - x0)
    print('470 max diff: yuv={}, bgr={}'.format(d0, d1))

    # test COLOR_BGR2YCrCb
    y0 = cv2.cvtColor(bgr, cv2.COLOR_BGR2YCrCb)
    x0 = cv2.cvtColor(y0, cv2.COLOR_YCrCb2BGR)
    x1 = convert_yvu601_to_bgr(yvu601)
    d0 = np.max(yvu601.astype('int') - y0)
    d1 = np.max(x1.astype('int') - x0)
    print('601 max diff: yuv={}, bgr={}'.format(d0, d1))

    # test fcc yuv2bgr
    test_yuv2bgr_fcc(yuv_fcc)

    # test fcc br2yuv
    y0 = cv2.cvtColor(bgr, cv2.COLOR_BGR2YUV_I420)
    y1 = convert_yuv_to_fcc(yuv_fcc, 'I420')
    print('I420 yuv max diff: {}'.format(np.max(np.abs(y1.astype('int') - y0))))

    y0 = cv2.cvtColor(bgr, cv2.COLOR_BGR2YUV_IYUV)
    y1 = convert_yuv_to_fcc(yuv_fcc, 'IYUV')
    print('IYUV yuv max diff: {}'.format(np.max(np.abs(y1.astype('int') - y0))))

    y0 = cv2.cvtColor(bgr, cv2.COLOR_BGR2YUV_YV12)
    y1 = convert_yuv_to_fcc(yuv_fcc, 'YV12')
    print('YV12 yuv max diff: {}'.format(np.max(np.abs(y1.astype('int') - y0))))


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/39597.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

曲师大2023大一新生排位赛-B.Sort题解

题目描述 插入排序是一种非常常见且简单的排序算法。王同学是一名大一的新生&#xff0c;今天许师哥刚刚在上课的时候讲了插入排序算法。 假设比较两个元素的时间为 &#xff0c;则插入排序可以以 的时间复杂度完成长度为 n&#xfffd; 的数组的排序。不妨假设这 n 个数字分…

JavaWeb(4)——HTML、CSS、JS 快速入门

一、JavaScript 数组 数组筛选&#xff08;查找&#xff0c;将原来数组中的某些数据去除&#xff09; <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content&quo…

【Hydro】一个简单的HBV水文模型产流Python实现

说明 HBV模型包括一系列自由参数&#xff0c;其值可以通过率定得到。同时也包括一些描述流域和气候特征的参数&#xff0c;它们的值在模型率定是假定不变。子流域的划分使得在一个子流域中可能有很多参数值。虽然在大多数应用中&#xff0c;各子流域之间参数值只有很小的变化&a…

webpack插件compression-webpack-plugin

Vue配置compression-webpack-plugin实现Gzip压缩 1、为什么要压缩&#xff1f; 打包的时候开启gzip可以很大程度减少包的大小&#xff0c;页面大小可以变为原来的30%甚至更小&#xff0c;非常适合于上线部署。更小的体积对于用户体验来说就意味着更快的加载速度以及更好的用户…

使用IDEA社区版创建SpringBoot项目

文章目录 1.关于IDEA社区版的版本2.下载Spring Boot Helper3.创建项目4.配置Maven国内源4.1找不到settings.xml的情况4.2找得到settings.xml的情况 4.3删除repository目录下的所有文件和目录5.加载项目6.解决org.springframework.boot:spring-boot-starter-parent:pom:2.7.13.R…

NXP i.MX 6ULL工业开发板硬件说明书( ARM Cortex-A7,主频792MHz)

前 言 本文档主要介绍TLIMX6U-EVM评估板硬件接口资源以及设计注意事项等内容。 创龙科技TLIMX6U-EVM是一款基于NXP i.MX 6ULL的ARM Cortex-A7高性能低功耗处理器设计的评估板&#xff0c;由核心板和评估底板组成。核心板经过专业的PCB Layout和高低温测试验证&#xff0c;稳…

我们如何在 Elasticsearch 8.6、8.7 和 8.8 中加速数据摄入

作者&#xff1a;Adrien Grand, Joe Gallo, Tyler Perkins 正如你们中的一些人已经注意到的&#xff0c;Elasticsearch 8.6、8.7 和 8.8 在各种数据集上带来了良好的索引加速&#xff0c;从简单的关键字到繁重的 KNN 向量&#xff0c;以及摄取管道繁重的摄取工作负载。 摄取涉及…

Java Mybatis拓展03

0目录 1.MyBatis当实体类和数据库字段名不对应 2.多表查询 1.MyBatis当实体类和数据库字段名不对应 方法2 测试 多表查询 加入子标签association 模糊查询 加入Address 对象 三表联查 2.五表联查 测试

使用 appium 进行微信小程序的自动化测试

目录 前言&#xff1a; 微信小程序结构 自动化用例的调整 示例代码 后记 前言&#xff1a; 微信小程序是一种流行的移动应用程序&#xff0c;它在移动设备上提供了丰富的功能和用户体验。为了确保微信小程序的质量和稳定性&#xff0c;自动化测试是必不可少的一环。Appiu…

el-table找出当前单元格与对应的上下列的值

当前单元格与对应的上下列的值如果不相同就设置个红色边框 当前单元格与对应的上下列的值如果不相同就设置个红色边框 当前单元格与对应的上下列的值如果不相同就设置个红色边框 以下是示例代码&#xff0c;对tableData数据的name字段进行处理 如果当前name值与上一条数据的na…

港联证券-尾盘集合竞价拉升意味着什么意思?

在股票市场中&#xff0c;尾盘集合竞价是指每个交易日的最后几分钟&#xff0c;即下午14:57到3:00之间的交易。在这段时间内&#xff0c;所有股票的买卖都将以竞价的方式进行&#xff0c;最终价格以最高买价与最低卖价的平均值确定&#xff0c;成交量也将作为当日的收盘价和成交…

科普一下Elasticsearch中BM25算法的使用

首先还是先了解几个概念&#xff0c;Elasticsearch是一个开源的分布式搜索和分析引擎&#xff0c;它使用一系列算法来计算文档的相关性分数&#xff08;relevance score&#xff09;。这些算法用于确定查询与文档的匹配程度&#xff0c;以便按相关性对搜索结果进行排序。以下是…

Unity URP 2D光照导入与配置

上面随时间变化的火烧云和晚霞&#xff0c;篝火的呼吸光照&#xff0c;都是URP的功劳。 1.什么是URP&#xff1f; URP 全称为 Universal Render Pipeline(通用渲染管线)。 它的特点是在手游和端游均能在保持性能的同时有良好的效果 也就说在多数情况下&#xff0c;在下面的平台…

10亿级用户,如何做 熔断降级架构?微信和hystrix的架构对比

说在前面 在40岁老架构师 尼恩的读者社区(50)中&#xff0c;最近有小伙伴拿到了一线互联网企业如极兔、有赞、希音、百度、网易、滴滴的面试资格&#xff0c;遇到一几个很重要的面试题&#xff1a; (1) 什么是熔断&#xff0c;降级&#xff1f;如何实现&#xff1f; (2) 服务熔…

linux内核调试工具记录

Linux性能测试使用的工具在github网站可见&#xff0c;网址如下&#xff1a; slides: http://www.slideshare.net/brendangregg/linux-performance-analysis-new-tools-and-old-secrets video: https://www.usenix.org/conference/lisa14/conference-program/presentation/greg…

LLM微调 | LoRA: Low-Rank Adaptation of Large Language Models

&#x1f525; 发表于论文&#xff1a;(2021) LoRA: Low-Rank Adaptation of Large Language Models &#x1f604; 目的&#xff1a;大模型预训练微调范式&#xff0c;微调成本高。LoRA只微调新增的小部分参数。 文章目录 1、背景2、动机3、LoRA原理4、总结 1、背景 adapter…

BUFG/BUFGCE/BUFH/BUFHCE/BUFH/BUFGHCE/BUFMR/BUFMRCE/BUFR/IBUF/IBUFDS

本文对BUFG/BUFGCE/BUFH/BUFHCE简单介绍&#xff0c;便于后续查看。 原语的使用&#xff1a;在vivado中找到所要用的原语&#xff0c;直接将其实例化到设计中即可。 文章目录 BUFGBUFGCEBUFHBUFHCEBUFMRBUFRBUFMRCEIBUFIBUFDS 下图为 7 系列 FPGA 时钟架构图&#xff1a; BU…

又卡了,大数据平台容器化运维走起

文章目录 一、背景二、方案总结三、方案实施3.0 转移数据修改docker默认存储位置3.1 手动清理3.2 定时容器日志清理3.3 限制 Docker 容器日志大小 大家好&#xff0c;我是脚丫先生 (o^^o) 大数据基础平台的搭建&#xff0c;我采用的是全容器化Apache的大数据组件。 之前还很美…

Java对象深拷贝、浅拷贝之枚举类型

问题&#xff1a;为什么属于引用类型的enum不会有深拷贝浅拷贝的问题&#xff1f; 解释&#xff1a; 在Java中&#xff0c;枚举类型是一种特殊的类类型。每个枚举值都是该枚举类型的一个实例&#xff0c;并且这些实例在枚举类型被初始化时就已经被创建。这些实例在程序的整个…

如何二次封装一个el-table组件并二次复用

*注:示例使用的是vue3和element进行二次封装的 首先我们来看效果图&#xff08;总共可以分为以下几个模块&#xff09;&#xff1a; 表格数据操作按钮区域表格信息提示区域表格主体内容展示区域表格分页区域 表单搜索没有封装在这里是为了降低代码的耦合性(有兴趣的可以查看我…