从kafka如何保证数据一致性看通常数据一致性设计

一、前言

在数据库系统中有个概念叫事务,事务的作用是为了保证数据的一致性,意思是要么数据成功,要么数据失败,不存在数据操作了一半的情况,这就是数据的一致性。在很多系统或者组件中,很多场景都需要保证数据的一致性,有的是高度的一致性。特别是在交易系统等这样场景。有些组件的数据不一定需要高度保证数据的一致性,比如日志系统。本节从从kafka如何保证数据一致性看通常数据一致性设计。

二、kafka那些环节存在数据不一致性

  1. 数据复制:在Kafka中,数据从主节点(leader)复制到从节点(follower)的过程中,由于网络延迟、节点故障或其他原因,可能导致从节点未能及时获取或处理主节点的数据变更,从而产生数据不一致。
  2. 消息提交:Kafka中的消息提交涉及多个阶段,包括生产者发送消息、消息被写入日志、消息被复制到从节点等。如果在这个过程中发生错误或异常,可能导致消息丢失或重复,进而引发数据不一致。
  3. 消费者处理:消费者在处理消息时,如果因为某些原因(如网络中断、消费者进程崩溃等)未能成功处理消息,而消息又被重新投递给其他消费者处理,也可能导致数据不一致。
  4. 分区重新分配:在Kafka中,如果分区的leader节点发生故障,Kafka会触发分区重新分配,将leader切换到其他节点。在这个过程中,如果切换不及时或切换过程中发生错误,可能导致数据不一致。

三、kafka如何保证数据一致性(内容摘自半亩方塘立身)

我们知道Kafka架构如下,主要由 Producer、Broker、Consumer 三部分组成。一条消息从生产到消费完成这个过程,可以划分三个阶段,生产阶段、存储阶段、消费阶段。

生产阶段: 在这个阶段,从消息在 Producer 创建出来,经过网络传输发送到 Broker 端。

存储阶段: 在这个阶段,消息在 Broker 端存储,如果是集群,消息会在这个阶段被复制到其他的副本上。

消费阶段: 在这个阶段,Consumer 从 Broker 上拉取消息,经过网络传输发送到Consumer上。

那么如何保证消息不丢我们可以从这三部分来分析。

消息传递语义

在深度剖析消息丢失场景之前,我们先来聊聊「消息传递语义」到底是个什么玩意?

所谓的消息传递语义是 Kafka 提供的 Producer 和 Consumer 之间的消息传递过程中消息传递的保证性。主要分为三种。

作者:半亩方塘立身
链接:https://zhuanlan.zhihu.com/p/682321210
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
 

1. 首先当 Producer 向 Broker 发送数据后,会进行 commit,如果 commit 成功,由于 Replica 副本机制的存在,则意味着消息不会丢失,但是 Producer 发送数据给 Broker 后,遇到网络问题而造成通信中断,那么 Producer 就无法准确判断该消息是否已经被提交(commit),这就可能造成 at least once 语义。

2. 在 Kafka 0.11.0.0 之前, 如果 Producer 没有收到消息 commit 的响应结果,它只能重新发送消息,确保消息已经被正确的传输到 Broker,重新发送的时候会将消息再次写入日志中;而在 0.11.0.0 版本之后, Producer 支持幂等传递选项,保证重新发送不会导致消息在日志出现重复。为了实现这个, BrokerProducer 分配了一个ID,并通过每条消息的序列号进行去重。也支持了类似事务语义来保证将消息发送到多个 Topic 分区中,保证所有消息要么都写入成功,要么都失败,这个主要用在 Topic 之间的 exactly once 语义。 其中启用幂等传递的方法配置enable.idempotence = true启用事务支持的方法配置:设置属性 transcational.id = "指定值"

3. 从 Consumer 角度来剖析, 我们知道 Offset 是由 Consumer 自己来维护的, 如果 Consumer 收到消息后更新 Offset, 这时 Consumer 异常 crash 掉, 那么新的 Consumer 接管后再次重启消费,就会造成 at most once 语义(消息会丢,但不重复)。

4. 如果 Consumer 消费消息完成后, 再更新 Offset,如果这时 Consumer crash 掉,那么新的 Consumer 接管后重新用这个 Offset 拉取消息, 这时就会造成 at least once 语义(消息不丢,但被多次重复处理)。

总结: 默认 Kafka 提供「at least once」语义的消息传递,允许用户通过在处理消息之前保存 Offset的方式提供 「at mostonce」 语义。如果我们可以自己实现消费幂等,理想情况下这个系统的消息传递就是严格的「exactly once」, 也就是保证不丢失、且只会被精确的处理一次,但是这样是很难做到的。

接下来我们从生产阶段、存储阶段、消费阶段这几方面看下kafka如何保证消息不丢失。

生产阶段

通过深入解析Kafka消息发送过程我们知道Kafka生产者异步发送消息并返回一个Future,代表发送结果。首先需要我们获取返回结果判断是否发送成功。

// 异步发送消息,并设置回调函数 
producer.send(record, new Callback() { 
    @Override 
    public void onCompletion(RecordMetadata metadata, Exception exception) {
        if (exception != null) { 
            System.err.println("消息发送失败: " + exception.getMessage()); 
        } else { 
            System.out.println("消息发送成功到主题: " + metadata.topic() + ", 分区: " + metadata.partition() + ", 偏移量: " + metadata.offset()); 
        } 
    } 
});

 

 
 

消息队列通过最常用的请求确认机制,来保证消息的可靠传递:当你的代码调用发消息方法时,消息队列的客户端会把消息发送到 Broker,Broker 收到消息后,会给客户端返回一个确认响应,表明消息已经收到了。客户端收到响应后,完成了一次正常消息的发送。

Producer(生产者)保证消息不丢失的方法:

1. 发送确认机制:Producer可以使用Kafka的acks参数来配置发送确认机制。通过设置合适的acks参数值,Producer可以在消息发送后等待Broker的确认。确认机制提供了不同级别的可靠性保证,包括:

• acks=0:Producer在发送消息后不会等待Broker的确认,这可能导致消息丢失风险。

• acks=1:Producer在发送消息后等待Broker的确认,确保至少将消息写入到Leader副本中。

• acks=all或acks=-1:Producer在发送消息后等待Broker的确认,确保将消息写入到所有ISR(In-Sync Replicas)副本中。这提供了最高的可靠性保证。

2. 消息重试机制:Producer可以实现消息的重试机制来应对发送失败或异常情况。如果发送失败,Producer可以重新发送消息,直到成功或达到最大重试次数。重试机制可以保证消息不会因为临时的网络问题或Broker故障而丢失。

 
 

Broker存储阶段

正常情况下,只要 Broker 在正常运行,就不会出现丢失消息的问题,但是如果 Broker 出现了故障,比如进程死掉了或者服务器宕机了,还是可能会丢失消息的。

在kafka高性能设计原理中我们了解到kafka为了提高性能用到了 Page Cache 技术.在读写磁盘日志文件时,其实操作的都是内存,然后由操作系统决定什么时候将 Page Cache 里的数据真正刷入磁盘。如果内存中数据还未刷入磁盘服务宕机了,这个时候还是会丢消息的。

为了最大程度地降低数据丢失的可能性,我们可以考虑以下方法:

  1. 持久化配置优化:可以通过调整 Kafka 的持久化配置参数来控制数据刷盘的频率,从而减少数据丢失的可能性。例如,可以降低 flush.messagesflush.ms 参数的值,以更频繁地刷写数据到磁盘。
  2. 副本因子增加:在 Kafka 中,可以为每个分区设置多个副本,以提高数据的可靠性。当某个 broker 发生故障时,其他副本仍然可用,可以避免数据丢失。
  3. 使用acks=all:在生产者配置中,设置 acks=all 可以确保消息在所有ISR(In-Sync Replicas)中都得到确认后才被视为发送成功。这样可以确保消息被复制到多个副本中,降低数据丢失的风险。
  4. 备份数据:定期备份 Kafka 的数据,以便在发生灾难性故障时可以进行数据恢复。

消费阶段

消费阶段采用和生产阶段类似的确认机制来保证消息的可靠传递,客户端从 Broker 拉取消息后,执行用户的消费业务逻辑,成功后,才会给 Broker 发送消费确认响应。如果 Broker 没有收到消费确认响应,下次拉消息的时候还会返回同一条消息,确保消息不会在网络传输过程中丢失,也不会因为客户端在执行消费逻辑中出错导致丢失。

  1. 自动提交位移:Consumer可以选择启用自动提交位移的功能。当Consumer成功处理一批消息后,它会自动提交当前位移,标记为已消费。这样即使Consumer发生故障,它可以使用已提交的位移来恢复并继续消费之前未处理的消息。
  2. 手动提交位移:Consumer还可以选择手动提交位移的方式。在消费一批消息后,Consumer可以显式地提交位移,以确保处理的消息被正确记录。这样可以避免重复消费和位移丢失的问题。
作者:半亩方塘立身
链接:https://zhuanlan.zhihu.com/p/682321210
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

// 创建消费者实例
KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);

// 订阅主题
consumer.subscribe(Collections.singletonList(topic));

try {
    while (true) {
        // 消费消息
        ConsumerRecords<String, String> records = consumer.poll(100);

        for (ConsumerRecord<String, String> record : records) {
            // 处理消息逻辑
            System.out.println("消费消息:Topic = " + record.topic() +
                    ", Partition = " + record.partition() +
                    ", Offset = " + record.offset() +
                    ", Key = " + record.key() +
                    ", Value = " + record.value());

            // 手动提交位移
            TopicPartition topicPartition = new TopicPartition(record.topic(), record.partition());
            OffsetAndMetadata offsetMetadata = new OffsetAndMetadata(record.offset() + 1);
            consumer.commitSync(Collections.singletonMap(topicPartition, offsetMetadata));
        }
    }
} catch (Exception e) {
    e.printStackTrace();
} finally {
    consumer.close();
}

 四、数据一致系统设计特点

从kafka如何保证数据一致性看通常数据一致性设计,一般保证数据一致性,需要通过成功后commit的操作,消费过程中记录小标。成功与失败的环节都记上标志。

Kafka作为一个分布式发布-订阅消息系统,其数据一致性的系统设计特点主要包括以下几个方面:

  1. 分区与副本机制:Kafka将数据分成多个分区(Partition),每个分区在集群中有多个副本(Replica)。这些副本分布在不同的Broker上,以实现数据的冗余备份和高可用性。当某个Broker发生故障时,其他Broker上的副本可以接管服务,保证数据的持续可用。
  2. ISR(In-Sync Replicas)机制:ISR是Kafka中用于维护数据一致性的重要机制。它包含所有与Leader保持同步的副本。当ISR中的副本数量不足时,Kafka会暂停写入操作,以防止数据不一致。只有当ISR中的副本数量恢复到一定数量时,才会恢复写入操作。
  3. 消息提交确认:生产者发送消息到Kafka时,需要等待消息被写入ISR中的副本并得到确认,以确保消息被成功存储。同时,消费者在处理消息时也需要定期提交偏移量(Offset),以便在发生故障时能够从正确的位置继续消费。
  4. 原子性操作:Kafka保证消息在分区内的顺序性和原子性。这意味着在同一分区内的消息会按照发送的顺序被消费,且不会被其他消息插入打断。这有助于保证数据的一致性和正确性。
  5. 容错处理:当Kafka集群中的节点发生故障时,Kafka会自动进行故障转移和恢复操作。这包括从ISR中选择新的Leader、重新同步数据等,以确保数据的持续可用和一致性。

总之,Kafka通过分区与副本机制、ISR机制、消息提交确认、原子性操作和容错处理等手段,确保了其数据一致性的系统设计特点。这些设计使得Kafka能够在分布式环境中实现高吞吐量、持久化存储、可扩展性和高可靠性等特性,从而满足各种复杂场景下的数据一致性需求。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/393003.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

JVM-JVM调优基础(理论)

申明&#xff1a;文章内容是本人学习极客时间课程所写&#xff0c;作为笔记进行记录&#xff0c;文字和图片基本来源于课程资料&#xff0c;在某些地方会插入一点自己的理解&#xff0c;未用于商业用途&#xff0c;侵删。 原资料地址&#xff1a;课程资料 JVM参数 标准参数 …

- 工程实践 - 《QPS百万级的有状态服务实践》02 - 冷启动和热更新

本文属于专栏《构建工业级QPS百万级服务》 继续上篇《QPS百万级的有状态服务实践》01 - 存储选型实践。如图1架构&#xff0c;我们已经解决了数据生产的问题。 图1 但是我们的服务已经在运行了&#xff0c;并实时处理大量的请求&#xff0c;我们如何把内存中的数据版本更新呢。…

网页中实现打开qq添加群聊

网页中实现打开qq添加群聊 效果 登录qq群管理后台 1. https://qun.qq.com/#/handy-tool/join-group 2 . 复制生成的链接 代码 在html中使用的话就直接粘贴到对应的内容里面就行 如果是添加点击事件的话&#xff1a; <div click"joinQQGroup">添加群聊</…

Vue23 数据监测总结

代码 <!DOCTYPE html> <html><head><meta charset"UTF-8" /><title>总结数据监视</title><style>button{margin-top: 10px;}</style><!-- 引入Vue --><script type"text/javascript" src"…

mqtt 协议中的 QoS等级介绍

一、QoS等级 MQTT设计了一套保证消息稳定传输的机制&#xff0c;包括消息应答、存储和重传。在这套机制下&#xff0c;提供了三种不同层次QoS&#xff08;Quality of Service&#xff09;&#xff1a; QoS0&#xff0c;At most once&#xff0c;至多一次&#xff1b;QoS1&…

OpenAI全新发布的Sora,到底意味着什么?

16日凌晨&#xff0c;OpenAI发布了文本视频的工具&#xff08;text-do-video&#xff09;Sora&#xff0c;整个世界再次被震撼。 Sora的出现&#xff0c;到底意味着什么&#xff1f; 目录 Sora的背景与概述Sora是什么&#xff1f;能为我们做些什么&#xff1f;存在的一些问题 文…

C++ 里设置Expose on Spawn csv 通过 UStruct 导入为 DataTable

一.蓝图里面暴露的设置如下&#xff1a; C 中写法如下&#xff1a; 属性如下&#xff1a; 关卡蓝图中Spawn时会有 参数接口 二. 创建UObject类&#xff0c;并在C中声明结构体。继承FTableRowBase 在Excel里&#xff0c;创建对应csv文件 如果在头文件修改了属性&#xff0c;使用…

情人节官宣频发,白敬亭宋轶等多对情侣陷情风。

♥ 为方便您进行讨论和分享&#xff0c;同时也为能带给您不一样的参与感。请您在阅读本文之前&#xff0c;点击一下“关注”&#xff0c;非常感谢您的支持&#xff01; 文 |猴哥聊娱乐 编 辑|徐 婷 校 对|侯欢庭 情人节甜蜜满溢&#xff0c;娱乐圈情侣们争相晒幸福。2024年&…

Rust Vs Go:从头构建一个web服务

Go 和 Rust 之间的许多比较都强调它们在语法和初始学习曲线上的差异。然而&#xff0c;最终的决定性因素是重要项目的易用性。 “Rust 与 Go”争论 Rust vs Go 是一个不断出现的话题&#xff0c;并且已经有很多关于它的文章。部分原因是开发人员正在寻找信息来帮助他们决定下…

CogCopyRegionTool

关于visionpro工具操作原理文章甚少&#xff0c;以下是本人自己查阅visionpro官方文档完成的&#xff1a; “复制区域”工具允许您对单个图像或两个独立的图像执行多个复制操作&#xff1a; 将输入图像的一部分复制到新的输出图像。 1、 将输入图像的一部分复制到现有的目标…

一杯咖啡一根烟,一个bug改一天,让程序员崩溃的43个瞬间

一杯咖啡一根烟&#xff0c;一个bug改一天 新年刚刚开始&#xff0c;我估计大家都还处于打发时间的状态吧&#xff01;让我们来谈谈一些轻松的内容&#xff0c;调整一下心情&#xff0c;希望所有在座的朋友&#xff0c;在2024年能够bug多多&#xff0c;收入多多&#xff0c;美女…

Apache DolphinScheduler中ZooKeeperCDH不兼容问题的解决方案

背景 看到Apache DolphinScheduler社区群有很多用户反馈和讨论这块问题&#xff0c;针对不兼容的问题&#xff0c;不仅需要自己重新编译各一个新包&#xff0c;而且因为默认是使用zk-3.8的配置&#xff0c;所以会出现不兼容问题。使用zk-3.4配置即可适配3.4.x 解决办法&#…

北京地区MySQL培训课程:深度解析查询语句中的WHERE条件设置

MySQL如果在查询时想要获取满足的条件的记录&#xff0c;就需要使用WHERE子句&#xff0c;WHERE子句用于在 MySQL 中过滤查询结果&#xff0c;只返回满足条件的数据记录。 语法格式&#xff1a; SELECT column1, column2, ...FROM table_name WHERE condition; SELECT 列名,…

【Linux】Framebuffer 应用

# 前置知识 LCD 操作原理 在 Linux 系统中通过 Framebuffer 驱动程序来控制 LCD。 Frame 是帧的意思&#xff0c; buffer 是缓冲的意思&#xff0c;这意味着 Framebuffer 就是一块内存&#xff0c;里面保存着一帧图像。 Framebuffer 中保存着一帧图像的每一个像素颜色值&…

才气系统与逻辑系统道装实现的比较

才气系统与逻辑系统道装实现的比较 道装道装思想简介烛火流形学习引擎&#xff0c;流形学习的引入王船山信息熵&#xff0c;简称王船山熵&#xff1b;凝聚态数学可计算函数科学方法道装由来琴语言简介逻辑与才气的逐层比较表格&#xff08;王船山熵&#xff09; 道装 道装思想…

LeetCode 0589.N 叉树的前序遍历:深度优先搜索(DFS)

【LetMeFly】589.N 叉树的前序遍历&#xff1a;深度优先搜索(DFS) 力扣题目链接&#xff1a;https://leetcode.cn/problems/n-ary-tree-preorder-traversal/ 给定一个 n 叉树的根节点 root &#xff0c;返回 其节点值的 前序遍历 。 n 叉树 在输入中按层序遍历进行序列化表…

防火墙 iptables(二)--------------SNAT与DNAT

一、SNAT ①SNAT 应用环境: 局域网主机共享单个公网IP地址接入Internet (私有IP不能在Internet中正常路由) ②SNAT原理: 源地址转换&#xff0c;根据指定条件修改数据包的源IP地址&#xff0c;通常被叫做源映射 数据包从内网发送到公网时&#xff0c;SNAT会把数据包的源IP由…

【Web】CVE-2022-22947 SpringCloud Gateway SpEL漏洞学习

目录 简介 Actuator操作Gateway接口列表 复现流程 漏洞复现 简单原理 简介 Spring Boot Actuator 和 Spring Cloud Gateway 是 Spring 生态系统中的两个关键组件&#xff0c;它们在微服务架构中扮演着不同的角色&#xff0c;下面简要介绍它们之间的关系&#xff1a; Spri…

MobaXterm下载安装及使用教程

一、MobaXterm的简介 MobaXterm是一款功能强大的远程计算工具&#xff0c;集成了诸多网络工具和便利功能&#xff0c;包括SSH、X11服务器、SFTP等&#xff0c;支持Windows系统。用户可以使用MobaXterm来轻松管理远程服务器&#xff0c;进行文件传输&#xff0c;远程桌面显示等操…

九宫格锁屏模块,九宫格设置密码

要使用九宫格设置密码,先用自定义一个九宫格样式,使用的自定义的view画出九个点,然后重写onMeasure和onDraw,这两个方法,并处理onTouchEvent,这个事件 在Android视图的绘制和布局过程中&#xff0c;onMeasure和onDraw这两个方法的调用顺序是固定的。以下是它们通常的调用顺序&…